首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradable shape memory polymers (SMPs) are a class of intelligent materials with great potential for imparting biomaterial scaffolds multifunetionality in the field of tissue engineering and regenerative medicine. In this study, the biodegradable SMP poly( D, L-lactide-co-trimethylene carbonate) (PLMC) incorporated with the ,dexamethasone (Dex), which was a kind of synthetic bone-formation inducing factor, was fabricated into nanofibers via dectrospinning. The morphology, constituent, thermal and mechanical properties of the produced Dex/PLMC composite nanofibers were characterized by scanning electron microscopy (SEM), Fourier transform :infrared spectroscopy ( FTIR ), differential scanning calorimetry (DSC), and tensile testing, respectively. Then, ultrasound was ,employed as a remote stimulus to regulate the Dex releasing behavior from the composite nanofibers. It was found that the generated Dex/ PLMC composite nanofibers had a uniform and smooth morphology with a diameter of ca. 564 nm. Mechanical testing results showed that incorporation of the Dex gave rise to improved mechanical performance with the tensile strength, Young' s modulus and strain- at-break increased by 18.2 %, 20. 0 % and 64.4 %, respectively. DSC data revealed that the glass transition temperature ( Tg ) of the composite nanofibers, i. e., the thermal transition temperature (Ttrans) for activating shape memory effect, was 39. 7 ℃. Moreover, the release kinetics of the encapsulated Dex in the aanofibers could be manipulated by varying the acoustic power and insonation duration. These results suggested that the newly developed Dex/PLMC nanofibers could be a promising drug delivery system for applications in bone tissue engineering (BTE).  相似文献   

2.
Biopolymer fibers have great potential for technical applications in biomaterials. The surface properties of fibers are of importance in these applications. In this study, electrospun poly(L-lactide)(PLLA)/poly(ε-caprolactone)(PCL) membranes were modified by cold plasma treatment and coating gelatin to improve the surface hydrophilic properties. The morphologies of the fibers were observed by scanning electron microscopy(SEM). Atomic force microscopy(AFM) was employed to show the surface characteristics of the fibers. The chemical feature of the fibrous membrane surfaces was examined by X-ray photoelectron spectroscopy(XPS). The surface wettability of the fibrous membrane was also characterized by water contact angle measurements. All these results show that plasma treatment can have profound effects on the surface properties of fibrous membranes by changing their surface physical and chemical features. Gelatin-PLLA/PCL membrane has great potential in applications of tissue engineering scaffolds.  相似文献   

3.
The ideal small-diameter vascular grafts should mimic the nanostructure and mechanical properties of nature blood vessel. In this study, electrospun chitosan( CS)/poly( L-lactic-co-ε-caprolactone)( PLCL) nanofibers were developed for potential small-diameter blood vessel applications. CS is a positively charged polymer which is beneficial for cell attachment and growth,while PLCL provides favorable mechanical support due to its excellent elasticity. Typical nanofibrous structure was observed in both CS/PLCL and pure PLCL scaffolds. The optimal mechanical property could be achieved when the weight ratio of CS/PLCL was 1 ∶ 2.Compared with pure PLCL scaffolds, the CS/PLCL scaffolds showed higher hydrophilicity and markedly promoted the attachment,spreading and proliferation of human umbilical vein endothelial cells( HUVECs). Hence,CS/PLCL scaffolds can be used as potential vascular grafts.  相似文献   

4.
1 Results Despite rapid progress in the development of resistive-type humidity sensors, the detection of low humidity is still a problem[1, 2]. In this study, poly(4-vinylpyridine) was crosslinked and quaternized with 1,4-bromobutane to form a polyelectrolyte humidity sensitive film on interdigitated gold electrodes, which was further coated with a layer of polypyrrole by a facile method of vapor phase polymerization process. The composite so prepared was characterized by UV-vis spectroscopy and scanning electron microscopy. It was found that the impedance of the composite changed linearly with humidity in the range of 0~60%RH with good sensitivity. In addition, it exhibited a fast response (t90%: ≈33 s and ≈110 s for adsorption and desorption, respectively) and a relative small hysteresis (≈5%RH). The effect of concentration and ratio of oxidizing agent and dopingagent, temperature of vapor phase polymerization of pyrrole on the humidity sensitive properties of the composite have been investigated. The sensitive mechanism of the composite was also explored. The composite of conducting PPy and polyelectrolyte has great potential as a candidate sensitive material forlow humidity detection.  相似文献   

5.
Being aimed to developing intermetallic base structural materials to be worked at above 1000℃, a systematic investigation has been performed of the fundamental crystallographic structure, phase constitution map, density-composition dependence, oxidation resistance and general mechanical behaviour for the ternary intermetallic alloys in the Nb-Ti-Al system. Promissing results have been obtained at the initial stage in the current program. The 1100℃ high temperature strength at the strain rate of 10-2/s and 10-5/s for the ternary compound NbTiAl3 (γ1) base alloys are generally much higher than that of the binary compound TiAl (γ), especially in the γ1 + α2 phase region, it is as high as twice as that of TiAl. The densities are 4.1-4.79g/cm3, depending on relative amount of the intermetallics involved and the density difference between the intermetallics. The oxidation resistance at the temperature of 900-1200℃ of the compound NbTiAl3 is relatively low but still acceptable. However, by adjusting the  相似文献   

6.
1 Results Poly(ether urethane) was composed of incompatible hardware and software.It had better mechanical properties at room temperature,good flexibility,and lower glass transition temperature[1].It was increased the transmission of charged ions that polyether soft segment occurred solvent role with the alkali metal salts[2].However,conductivity of room temperature was low,and the study was very few to inorganic oxide particles compositing poly(ether urethane).This indicates the importance of solid polymer electrolytes.In our laboratory,we have studied a solid polymer electrolytes (SPE) based on nano-SiO2 composite linear poly(ether urethane).  相似文献   

7.
IntroductionIt is well knownthat nanoparticles have rich propertiesand are useful for functional composites . The nanometricsize ,leading to huge specific surface area up to or morethan1 000m2/g ,andtheir unique properties have attractedintensive interests . Thus many articles have elucidated thepreparation of polymer matrix nanocomposites( PMNC)[1 6]. Polymers are very i mportant matricesbecause of their flexibility and easy processing .Nanoparticles i mpart larger-size congeries because of…  相似文献   

8.
The surface-passivated and non-surface-passivated zinc oxide nano-particles (marked as s-nanoZnO and ns-nanoZnO respectively) were evenly dispersed in polymer solutions with the aid of ultrasonic vibration to prepare nanocomposite film by free casting and to prepare nanocomposite fibers by wet spinning and to prepare nancomposites coating by surface smearing. The dispersion of s-nanoZnO and nsnanoZnO in PAN matrix were observed by transmittance electron microscopy, the mechanical properties of the relevant compesite samples were studied by INSRTON tensile strength tester. It was found that s-nanoZnO behaves a well-dispersed morphology in PAN films and fibers when its concentration was 2 wt% but ns-nanoZnO nano particles agglomerate into larger congeries in PAN films. It means that the surface-passivated process oft zinc oxide nano. particles was effective to disperse. The relative intensity and elonsation at break of s-nanoZnO-PAN composite fibers show maximum values with the increase of nano particle content in compesites (from 0 wt% to 2 wt% of s- nanoZnO). The elasticity of the composite fibers increases whereas their modulus declines. Balanced the changes of the properties mentioned above, 2 wt% s-nanoZnO in PAN matrix is a proper content for the composite fibers spun by wet spinning. The result of surface smearing test means that the reactim between s-nanoZnO and polymer can be indicated by the color of nanocomposite surface coat on fibers.  相似文献   

9.
Waterborne polyurethane(WBPU)with controlled biodegradability and biocompatibility was synthesized by using poly(ε-caprolactone)(PCL)as the polyglycol,isophorone diisocyanate(IPDI)as the isocyanate,2,2-bishydroxymethylbutyric acid(DMPA)as the chain extender and 1,4-butanediol(BDO)as the hard-segment regulating agent.We found that BDO content significantlyinfluencedmechanicalproperties,degradable performances and cyto-biocompatibility of PCL-WBPUs.Increasing the BDO content in PCL-WBPU enhanced its tensile strength and decreases strain.Enzymolysis and hydrolysis properties were also regulated by BDO content,but with different mechanisms.Cytobiocompatibility was evaluated with ATDC5 cells.The results show that the biodegradability of PCL-WBPU is significantly determined by BDO content,which exerts a serious influence on its polymer structure,leading to resultant degradable properties.  相似文献   

10.
Introduction Regeneration of injured tissue on a man-made template has been used since the earlier 1980s[1]. Afterward, it was accepted as a tissue engineering technology[2,3]. Nowadays many kinds of damaged or dysfunctional tissues/organs such as bones, …  相似文献   

11.
Electrospun aligned ultrafine fibers of poly( lactide-coglycolide)( PLGA) can be used to construct biomimetic scaffolds for engineering those structurally anisotropic and dense tissues( e. g.,tendon,ligament,etc.). But the acidic degradation products of the PLGA could result in p H decrease in the vicinity of the scaffolds,which may give rise to biocompatibility concerns. To address the noted problem, this study was designed to evaluate the p Hcompensation capacity of using Lysine( Lys) —a kind of basic amino acid on the acidic degradation products of PLGA. Ultrafine PLGA( 50∶ 50) fibers with 0,10%,20%,and 30% by weight of Lys loadings were prepared by a stable jet electrospinning( SJES)approach. The morphology,structure,and mechanical properties of the electrospun aligned fibrous mats of Lys-incorporated PLGA( 50∶50) were characterized by scanning electron microscope( SEM),Fourier transform infrared spectroscopy( FTIR),and tensile testing,respectively. Thereafter,the fibrous PLGA( 50 ∶50) scaffolds were subjected to degradation by being immersed in phosphate buffered saline( PBS,p H 6. 86) solution at 37 ℃ for 5weeks. Our results show that the formed Lys / PLGA composite ultrafine fibers have a well-aligned and uniform morphology with a fineness of ca. 1 #m in diameter. Introduction of Lys led to increased mechanical performance; that is,when the Lys loading is less than 30%,tensile strength and Young's modulus of the aligned Lys / PLGA fibers reached up to the impressive values of 84. 5 MPa and 2. 4 GPa,respectively. Degradation results show that the p H of the PLGA group fell to 5. 6 in 5 weeks while the p H of the Lys /PLGA groups with 10%,20%, and 30% of Lys loadings was maintained at 6. 3, 6. 5 and 6. 7, respectively. This work demonstrated that incorporation of Lys into electrospun PLGA fibers could be an effective approach in mediating the p H decrease caused by the acidic degradation products of the PLGA.  相似文献   

12.
Surface of Ultra-high molecular weight polyethylene (UHMWPE) fiber were treated by chromic acid chemical etching, pyrrole chemical vapour phase deposition and the complex of these two methods, respectively. The change of surface properties and structure of fibers were discussed by Fiour Transform Infrared Spectroscope (FTIR), Dynamic Mechanical Analysis (DMA) and Scanning Electron Microscope (SEM). The results show that some new oxygenous groups could be found on surface of UHMWPE fiber after chromic acid chemical etching, which enhanced intemolecular interaction with polypyrrcle. The adhesion of the fiber and resin natrix increased after pyrrole chemical vapour deposition. When chromic acid etching combined with pyrrole chemical vapor deposition, the treated fiber not only has the same properties as original fiber bat also outstanding adhesion to epoxy resin matrix, and its composites have better mechanic properties shear strength), resulting from intemolecular interaction treated fiber and polypyrrole.  相似文献   

13.
Mismatch in mechanical properties can induce intimal hyperplasia,which is one of the main reasons for the failure of small diameter artificial blood vessels. Electrospun small diameter tubes with tailored mechanical properties were fabricated through blending poly( L-lactide-co-ε-caprolactone)( PLCL) and silk fibroin( SF)with the mass ratios of 30 /70,50 /50,and 70 /30 in this study.Scanning electron microscopy( SEM) and mechanical testing were used to characterize morphological and mechanical properties of the tubes. Results showed that tensile strength of the tubes was higher than most of the native blood vessels,and elongations at break of them were improved greatly by blending PLCL. Compliances of the tubes were all higher than 1% /13. 33 kPa( 1% /100 mmHg).Particularly,tubes with blending mass ratio of 50 /50 showed similar compliance with human native femoral arteries,which provided a promising biomaterial that could be applied on small diameter vascular applications.  相似文献   

14.
Poly(dimethylsiloxane) based microchip for DNA electrophoresis   总被引:2,自引:0,他引:2  
A novel poly(dimethylsiloxane)(PDMS) -based microchip for DNA separation through electrophoresis has been developed using a micro-electro-mechanical-system(MEMS) technology. Unlike previous hybrid PDMS microchip, one PDMS film is first created on glass support by pressing method in our microchip. Thus, increased band-broadening phenomena, arising from the material nonuniformity at the walls of microchannel, can be avoided in electrophoresis process. A low-viscosity hydroxypropylmethylcellulose-100 (HPMC-100) is used as the separation medium for fluorescent intercalator-labeled double-stranded DNA (dsDNA) fragments. Mannitol is introduced to PDMS-based microchip as a separation medium additive to enhance separation efficiency. At applied electric field strength of 150 V/cm, excellent separations of the PCR marker could be achieved with an effective separation distance of 25mm .  相似文献   

15.
The properties of soybean protein/poly(vinyl alcohol) (SP/ PVA) blended fibers subjected to wet heat treatment in hot water were measured. The structure of fibers was investigated by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WXD) and differential scanning calorimetry (DSC). The results show that the wet heat treatment above 100℃ has a great influence on the properties and structure of SP/PVA blended fibers. After the wet heat treatment at high temperature, the fibers exhibit the severe shrinking and yellowing, the great decrease in breaking strength and adhesive aggregation. The fibers show a broader main X-ray diffraction peak with the disappearance of minor diffraction peaks, a double DSC melting behavior with the peak temperatures of 215 and 233℃, and a weaker intensity of crystallization-sensitive absorbance peak of PVA component at 1 142 cm^-1. Therefore it is concluded that the wet heat treatment above 100℃ leads to a change in the crystalline structure of fibers and the scission and degradation of PVA macromolecular chains.  相似文献   

16.
The non-isothermal crystallization kinetics, isothermal crystallization and the morphology of crystals of the copolymer poly ( ethylene terephthalate/ isophthalate ) (IPET) were studied by DSC and polarized-light microscopy in this paper. DSC results indicate that the glass transition temperature Tg of IPET is slightly lower than that of poly (ethylene terephthalate) (PET), but the melting temperature Tm and the crystallization temperature Tc of PET and IPET have much difference. The difference of Tc between PET and IPET2 is about 7℃, and the difference of Tm between PET and IPET2 is about 16℃. From the kinetics analysis of the crystallization, the crystallization mechanism of all samples is of three-dimension spherulitic growth from instantaneous nuclei and the incorporation of isophthalate (IPA) decreases the crystallization rate of IPET greatly. The isothermal results indicate that the morphologies of PET and IPET crystals are all spherulite, which is in conformity to the results of non-isothermal d  相似文献   

17.
The aim of the series of papers is to discuss the application of Xenopus laevis, as model animal in biology, in ecotoxicology. X. laevis as model animal is wildly used in biological study and has provided a lot of relating data because of many advantages, such as living in water and being easily maintained, laying eggs in the whole year, and externally fertilizing and developing. Embryos and larvae of X. laevis like other amphibians are directly exposed in the aquatic environment and sensitive to pollutants. In addition, sex differentiation and sex organ development of X. laevis are sensitive to sex hormones and endocrine disruptors with sex hormone activities, which enable X. laevis to be used in studies on sex hormone disruption and reproductive toxicity of endocrine disruptors. Metamorphic development of X. laevis is very sensitive to thyroid hormones and thyroid disruptors, which enables X. laevis to be used for evaluating thyroid disruptors. Also, X. laevis ecotoxicology can be linked with amphibian population declines and malformed frog occurrence, being one of the hotspots in ecology. Thus, more and more laboratories have introduced X. laevis to ecotoxicological study. The quality of laboratory animals correlates with scientificity and reliability of results from animal experiments. It is especially important for toxicology. Quality control of X. laevis involving several factors such as water and food is discussed in this paper.  相似文献   

18.
Polyhydroxyalkanoates (PHAs)areaclassofnaturalpolyestersproducedasenergyand orcarbonstoragematerialsbynumerousorganisms[1,2 ] .ThemostcommonPHAsarepoly (3 hydroxybutyrate) (PHB)andrelatedcopolymerswith 3 hydroxyvalerate (PHBV ) .Becausecopolymersandtheirdegradatio…  相似文献   

19.
1 Results Polylactide or polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) have been utilized as bioabsorbable materials in the medical and pharmaceutical fields due to their biodegradable and biocompatible properties[1].However,due to its hydrophobicity and free carboxylic group,PLA or PLGA was not suitable for use to encapsulate the protein.Recently,poly (ε-caprolactone) and poly (D,L-lactide) were respectively grafted onto hydrophilic dextrin and gelatin to obtain the amphiphilic biodeg...  相似文献   

20.
An internet-based information and monitoring platform for the specific requirements of geotechnical engineering projects is presented. The platform is based on a hybrid-model approach consisting of a model-based information management system and a resource management system, the latter also referred to as DCMS. Project key information can be accessed via the main user interface, the "graphical navigator". The graphical navigator provides also a direct access to additional information in the DCMS. Prompt reac-tion in exceptional situations as well as in daily work gets an extensive support. In practical applications it has been proven that this platform seems to be an adequate tool especially for risk assessment and management in geotechnical engineering projects. Components and advantages of the platform as well as ex periences from the applications are presented and discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号