首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以改进的Hummer法制备了氧化石墨烯(GO),并以抗坏血酸(L-AA)为还原剂制备了还原性氧化石墨烯(rGO).以石墨烯为添加物,采用静电纺丝的方法制备了石墨烯/聚丙烯腈(GO/PAN)纳米纤维复合膜.使用场发射扫描电镜、X射线衍射、红外光谱以及热重分析对石墨烯进行了研究,测试了石墨烯对纳米复合纤维材料力学性能的影响.结果表明:当添加的GO质量分数为0.3%时,纺制的纤维平均直径为103nm,复合膜的力学性能有所提高,比纯PAN膜的拉伸强度提高了42.4%,断裂伸长率增加了32.5%;当GO质量分数超过0.3%时,复合膜的力学性能变差;当GO和rGO质量分数均为0.3%时,GO/PAN复合膜的力学性能优于rGO/PAN复合膜.  相似文献   

2.
以含可交联基团的磺化聚醚醚酮(SPEEK)为基体材料,通过分别添加一定比例的氧化石墨烯(GO)和磺化石墨烯(SGO)制备了SPEEK/GO及SPEEK/SGO复合膜,并通过各种性能测试对其进行了对比研究.结果表明:与纯SPEEK膜相比,SPEEK/GO及SPEEK/SGO复合膜具有更优异的热稳定性能;其阻醇性、质子传导...  相似文献   

3.
采用改进的Hummers法制备出氧化石墨烯(GO),并用苯基异氰酸酯对其功能化,接着将功能化的氧化石墨烯(iGO)与4,4’-二苯甲烷二异氰酸酯(MDI)在二甲基甲酰胺(DMF)溶剂中进行超声混合得到均匀混合液,再将混合液与聚四亚甲基醚二醇(PTMG)、1,4-丁二醇(BD)在DMF溶剂中进行原位聚合制备iGO/热塑性聚氨酯(TPU)纳米复合材料(GO-TPU),同时在相同条件下合成PU以供对比.采用XRD、FT-IR、XPS、Raman光谱、SEM和万能拉伸试验机对GO的功能化效果及GO-TPU的性能进行了表征.结果表明:苯基异氰酸酯成功接枝于GO表面,iGO在TPU基体中分散均匀,复合材料的拉伸强度和断裂伸长率均随GO含量的增加表现为先增大后减小的变化规律,当iGO的质量分数为1%时GO-TPU的拉伸强度和断裂伸长率均为最大值,分别为4.26 MPa和500%,与纯TPU相比,分别提高了127.1%和27.3%.  相似文献   

4.
以酰基化反应制备的氨基化石墨烯纳米复合物为填料,通过原位聚合反应制备氨基化石墨烯/聚酰亚胺(Amine-Graphene/Polyimide(A-Gr/PI))复合膜.利用红外光谱分析和场发射扫描电镜(FESEM)对其组成和形貌结构进行表征,利用热失重分析法对其热稳定性进行分析研究.与氨基化氧化石墨烯/聚酰亚胺相比,在聚酰亚胺中掺杂少量的A-Gr(w(A-Gr)=10%)后,复合物的堆叠致密度明显提高,该复合材料的导电能力可以通过控制PI基底中填料的含量加以调控.  相似文献   

5.
首先用改进的Hummers法制备氧化石墨烯(GO); 其次用原位还原法将银氨溶液中的Ag纳米粒子通过还原剂葡萄糖和GO复合, 获得Ag/GO胶体; 最后在真空干燥条件下得到Ag/GO涂层, 并用真空阶梯热还原技术制备Ag/还原氧化石墨烯(rGO)涂层. 利用X射线衍射、 扫描电子显微镜、 透射电子显微镜等方法对膜样品结构形貌进行表征, 并用润湿角测量仪和抑菌环方法分别检测样品的亲/疏水性和抗菌性能. 实验结果表明: 石墨烯基膜材料与基底结合较好, Ag纳米粒子在石墨烯片层间呈球形均匀分布, 粒径为20~50 nm; 纯GO和rGO膜表面未见菌落, 大肠杆菌与金黄色葡萄球菌均未出现有效抑菌环; 复合Ag纳米粒子后, 涂层的抑菌效果得到显著提高; 与Ag/GO复合膜相比, Ag/rGO复合膜呈更强的抗菌活性, 即低温退火有助于提高石墨烯基复合涂层的抗菌性能.  相似文献   

6.
通过原位复合方法制备出氧化锡锑/氧化石墨烯/聚酰亚胺(ATO/GO/PI)复合薄膜,并分析薄膜组成对其光学性质的影响.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外可见(UV-Vis)和红外反射光谱仪探究薄膜的微观形貌、紫外可见透过率及红外反射率.结果表明:当ATO、GO含量分别为0.6%、0.016%时,ATO/GO/PI复合薄膜结构为无定形态,此时ATO、GO纳米颗粒均匀分散在PI基体中,此类复合薄膜的红外反射率达86%,400~800nm波段透过率达97%,300~350nm紫外光透过率为0%.  相似文献   

7.
将氧化石墨烯(GO)改性,得到了氨基化改性的氧化石墨烯.再将氨基化改性的氧化石墨烯(GO)与TiO_2复合,制备了氨基改性的氧化石墨烯(GO)与TiO_2复合材料.用所制备的复合材料在可见光照射下,去除溶液中的氨氮,分别考察了不同因素对氨氮去除效率的影响.  相似文献   

8.
用简单绿色的方法制备三明治结构的石墨烯-碳纳米管纳米复合物(Gr-CNTs),并以该复合物作为填料,通过原位聚合法制备石墨烯-碳纳米管/聚酰亚胺(Gr-CNTs/Polyimide(PI))复合膜.与CNTs/PI相比,在聚酰亚胺中掺杂少量的Gr-CNTs(w≤10%)可明显提高PI的导电能力.而且这种复合材料的导电能力可以通过控制PI基底中填料的含量加以调控.该新型复合材料有望大范围应用于电子、太阳能电池以及生物传感器等领域.  相似文献   

9.
利用航空级耐高温环氧树脂(EP)5284作为基体,研究了不同氧基团含量的石墨烯(GR)基材料(GR、还原氧化石墨烯(rGO)、氧化石墨烯(GO))对碳纤维(CF)/EP的热性能、力学性能和电性能的影响.结果表明,GR、rGO和GO均使EP的最大反应放热峰向低温移动,其中以GO对树脂的影响最为显著;同时,GR、rGO和GO的加入均缩短了改性树脂体系达到一定交联程度所需的时间.添加0.2%(质量分数,下同)的rGO和GO对复合材料的玻璃化转变温度有明显的提高,但同样添加0.2%GR未提高复合材料的玻璃化转变温度.添加0.2%GR和0.2%rGO后均降低了复合材料的层间剪切强度,而添加0.2%GO则使复合材料的层间剪切强度提高了约10%.添加0.2%的GR、rGO和GO对CF/EP复合材料的导电性能均有改善作用,其电导率分别为CF/EP的4倍、5.29倍和2.88倍.复合材料的微观形貌分析表明,GO与CF、EP具有更好的相容性,GO在复合材料中与CF、EP形成了结合更为紧密、有效的界面,GR与CF、EP的相容性相对较差,而rGO居中.三者之中,GO有效提高了CF/EP复合材料的层间剪切性能和玻璃化转变温度,但对导电性能而言,rGO的改善作用最为显著.  相似文献   

10.
采用溶胶-凝胶法和二氧化硅粒子掺杂共混法分别制备了聚酰亚胺/SiO2杂化膜和纳米复合膜.采用红外分光光度计(FTIR)、热重分析仪(TGA)和透射电镜(TEM)表征了所制备膜的结构微观形态和热性能并进行分析对比,结果表明在杂化膜中SiO2在聚酰亚胺基体中可以形成分子级分散,复合膜表现出较强的吸湿性使其热分解温度较低.研究认为,采用溶胶-凝胶法制备聚酰亚胺/SiO2介电材料更为合理.  相似文献   

11.
采用改进后的Hummer法制备氧化石墨烯(GO),混酸法纯化单壁碳纳米管(SWCNTs),真空抽滤法制备GO/SWCNTs复合材料分子筛膜.通过透射电镜(TEM)、扫描电镜(SEM),X射线衍射仪(XRD)、热重分析(TGA)对复合膜材料组成、结构、形貌、性能等进行表征;其对混合气体(CO_2、N_2、CO)中CO_2和N_2的分离性能进行了研究.结果表明:制备的GO/SWCNTs分子筛膜中单壁碳纳米管成功嵌插到氧化石墨烯表面与片层之间,起到骨架支撑作用;混合气体中CO_2、N_2、CO的渗透系数最大分别达到1 976、1 897、149 Barrer,各组分气体分离系数为:α(CO_2/N_2)值7.2、α(N_2/CO)值32.8、α(CO_2/CO)值37.表现出良好的CO_2和N_2分离性能.  相似文献   

12.
将氧化石墨烯(GO)与凹凸棒土(APT)通过插层化学的方法制备了氧化石墨烯/凹凸棒土(GO/APT)复合材料,并研究了其对水中Cd(II)的吸附性能,考察了pH值、温度、吸附时间和吸附剂的用量等因素对吸附性能的影响.研究结果表明:制备的GO/APT复合材料具有优异的吸附性能.在温度为298 K、pH值为7、t=24 h条件下,该复合材料对水中Cd(II)的最大吸附量为216.0 mg·g-1,其吸附等温线符合Langmuir方程、吸附过程可用准1级动力学方程描述.吸附热力学研究表明该吸附过程属于自发吸热过程.与纯GO和APT粉末相比,GO/APT复合材料对水中的Cd(II)的吸附性能更好.  相似文献   

13.
利用改进的Hummers方法制备了氧化石墨烯,采用浸蘸式层层组装技术在棉织物表面制备氧化石墨烯/聚二甲基二烯丙基氯化铵盐酸盐(GO/PDDA)多层膜,并测试其电磁屏蔽性能,探讨GO/PDDA多层膜沉积层数对电磁屏蔽性能的影响.结果表明,随着GO/PDDA多层膜沉积层数的增加,氧化石墨烯在棉织物表面的含量增多,棉织物电磁屏蔽性能提升.当GO/PDDA多层膜层数为15时,电磁屏蔽效能达到3.16dB,表明52%的电磁波被具有电磁屏蔽性能的棉织物屏蔽.  相似文献   

14.
以Hummers法制备氧化石墨,超声剥离得到氧化石墨烯(graphene oxide,GO)。在25℃和90℃两种温度下,以聚乙烯亚胺(polyethyleneimine,PEI)为GO的还原剂和修饰剂,制备了PEI改性石墨烯分散液。光电子能谱和红外光谱揭示了温度对PEI还原GO反应的影响。研究结果表明:25℃时,PEI具有部分还原GO的能力,得到PEI修饰的氧化石墨烯(PEI-GO);90℃时,接枝的PEI逐渐从GO片层上解离,并将GO还原为表面修饰的石墨烯(PEI-RGO)。将石墨烯分散液抽滤组装为PEI-RGO薄膜,发现其电导率为117 S·m~(-1),有望用于石墨烯导电材料。  相似文献   

15.
石墨烯由于具有超高的导热性能,在热管理上有着广阔的应用前景。从修复结构缺陷出发,以氧化石墨烯为原料,有机小分子萘甲醇为修复剂,采用蒸发自组装法制备氧化石墨烯/萘甲醇(GO/NMT)复合薄膜,然后经过高温石墨化得到石墨化–石墨烯/萘甲醇(g-GO/NMT)薄膜。通过SEM、FT-IR、XRD、拉曼对制备的复合薄膜进行结构分析,并对其导热性能进行测试,当NMT的添加量为15%时,薄膜热导率达856.476 W/(m·K ),比石墨化–石墨烯(g-GO)薄膜的热导率提高了35%;通过对商用LED灯芯实际散热进行测试,g-GO膜的表面温度高达33.7 ℃,而g-GO/NMT复合膜的温度较低,仅为31.5 ℃。研究结果表明,g-GO/NMT复合膜具有更好的散热性能和更有效的热管理能力。  相似文献   

16.
石墨烯由于具有超高的导热性能,在热管理上有着广阔的应用前景。从修复结构缺陷出发,以氧化石墨烯为原料,有机小分子萘甲醇为修复剂,采用蒸发自组装法制备氧化石墨烯/萘甲醇(GO/NMT)复合薄膜,然后经过高温石墨化得到石墨化–石墨烯/萘甲醇(g-GO/NMT)薄膜。通过SEM、FT-IR、XRD、拉曼对制备的复合薄膜进行结构分析,并对其导热性能进行测试,当NMT的添加量为15%时,薄膜热导率达856.476 W/(m·K ),比石墨化–石墨烯(g-GO)薄膜的热导率提高了35%;通过对商用LED灯芯实际散热进行测试,g-GO膜的表面温度高达33.7 ℃,而g-GO/NMT复合膜的温度较低,仅为31.5 ℃。研究结果表明,g-GO/NMT复合膜具有更好的散热性能和更有效的热管理能力。  相似文献   

17.
采用改良Hummers工艺制备了氧化石墨烯(GO),利用液相球磨混合和热压成型工艺制备了不同填充比例的超高分子量聚乙烯(UHMWPE)/氧化石墨烯(GO)纳米复合材料(UHMWPE/GO),并在真空环境下采用γ射线对复合材料进行了辐照交联改性处理。通过傅里叶红外光谱(FT-IR)、凝胶含量实验及氧化指数(IO)对材料进行了表征,并研究了辐照前后UHMWPE/GO复合材料的吸水率、润湿性、表面自由能的变化规律。结果表明:辐照处理前后,GO表面均含有丰富的含氧官能团;辐照交联改性处理略微降低了UHMWPE/GO复合材料的吸水率;辐照交联改性处理与GO填充协同降低了UHMWPE/GO复合材料的接触角,增大了表面自由能,提高了润湿性。  相似文献   

18.
采用湿法预浸技术和模压工艺制备了氧化石墨烯(GO)改性碳纤维/环氧树脂(CF/E54-DDS)复合材料,利用差示扫描量热(DSC)分析、动态热机械分析(DMTA)、超声波C扫描等研究了GO对复合材料的热固化性能、凝胶工艺性能、动态热机械性能以及抗冲击损伤性能的影响.结果表明:GO结构中的羟基和羧基会促进改性树脂体系的固化反应,加快GO/E54-DDS的固化反应进程.在GO添加量(质量分数)小于0.5%时,GO的活性基团可增加改性树脂体系的交联密度,从而提高复合材料的玻璃化转变温度;但GO添加量大于0.8%时,会因DDS在固化网络结构中比例的大幅下降,反而降低复合材料的玻璃化转变温度.微观形貌分析显示GO/CF/E54-DDS预浸料比CF/E54-DDS预浸料表现出更好的浸润效果.CF/E54-DDS复合材料被破坏后CF表面光洁,破坏主要发生在CF与树脂基体的界面;而GO/CF/E54-DDS复合材料被破坏后,CF表面紧密黏附着GO/E54-DDS固化物,破坏主要发生在CF织物层间的GO/E54-DDS区域.冲击后压缩强度测试表明GO的存在提高了GO/CF/E54-DDS复合材料抵抗横向裂纹和纵向裂纹扩展的能力,减小了复合材料的损伤投影面积和裂纹凹坑深度,提高了冲击后压缩强度.  相似文献   

19.
以二胺单体4–(4’–三氟甲基)苯基–2,6–二(4’–氨基)苯基吡啶(TPBAPP)与六氟二酐(6FDA)为原料采用两步法制备了含三苯基吡啶结构的氟化聚酰亚胺.制备的聚酰亚胺具有优异的综合性能,在强极性和弱极性溶剂中均具有很好的溶解性,其玻璃化转变温度为356°C,5%的热失重温度为538°C.此外,PI膜拉伸强度为68 MPa,弹性模量达到1.25 GPa,在600 nm下的透光率达到83.3%,吸水率为0.56%,介电常数为3.49.本研究可为聚酰亚胺的改性及应用提供数据支撑.  相似文献   

20.
文章采用超支化聚合物聚酰胺胺(HPAMAM)和氧化石墨烯(graghene oxide,GO),通过真空抽滤自组装的方法制备了仿贝壳复合材料,并对其用京尼平进行了适当的交联。采用透射电子显微镜(transmission electron microscope,TEM)对GO进行了表征,采用红外光谱(infrared spectroscopy,IR)、扫描电子显微镜(scanning electron microscope,SEM)、X-射线衍射仪(X-ray diffraction,XRD)和电子万能试验机对HPAMAM/GO复合膜的结构和力学性能进行了表征。结果表明:HPAMAM/GO复合膜呈现出类似于贝壳的"砖"和"泥浆"排列的层状结构;随HPAMAM在复合膜中质量分数的提高,复合膜的延展性不断提高;在交联后,G-HPAMAM/GO复合膜的力学性能显著提高,拉伸强度约为150 MPa;复合膜保持了很高的韧性,其断裂伸长率高达10%以上。因此HPAMAM在构筑高强高韧仿贝壳复合材料方面具有非常高的研究价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号