首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
以羧基化聚丙烯腈(CPAN)为原料,通过复合改性和接枝改性的方式,制备β-环糊精(β-CD)/CPAN-g-聚乙烯亚胺(PEI)复合纳米纤维膜,为体系引入亲水的β-CD和吸附性能优异的PEI。通过红外光谱仪、X射线衍射仪、万能材料试验机、场发射扫描电镜等仪器对复合纳米纤维膜进行结构及性能表征,使用等离子体发射光谱仪、X射线光电子能谱仪探究复合纳米纤维膜对Cd2+和Pb2+的吸附性能及吸附机理。结果表明:改性得到的β-CD/CPAN-g-PEI复合纳米纤维膜具有优异的吸附性能,同时保留了纤维膜原有的力学性能,其对Cd2+和Pb2+的最大吸附量分别为176.67 mg/g和240.83 mg/g,吸附过程符合拟二级动力学模型和Langmuir等温吸附模型,且循环使用5次后仍保持80%以上的吸附性能。  相似文献   

2.
聚丙烯腈螯合纳米纤维的制备及其吸附性能研究   总被引:1,自引:0,他引:1  
用羟胺试剂与聚丙烯腈纳米纤维通过化学反应将部分氰基转化为偕胺肟基团,制备一种改性的聚丙烯腈纳米纤维,并研究了该纤维对金属Pb2+的吸附性能.结果表明:改性的聚丙烯腈纳米纤维对Pb2+具有较好的吸附性能.  相似文献   

3.
酸性腐蚀和极端高低温等恶劣的实际应用环境下,常规的静电纺纳米纤维空气过滤膜存在易变形和失效等风险.本研究以耐化学腐蚀、耐高低温的嵌段共聚物聚醚酰胺(polyether-block-amide, Pebax)为原料,通过添加曲拉通表面活性剂调控纺丝液性质,制备了新型Pebax纳米纤维空气过滤膜,并系统探究了该滤膜的特性和空气过滤性能.结果表明:该Pebax纳米纤维的平均直径为(129±31) nm,在5.3 cm/s的风速测试条件下,对0.3μm空气颗粒物(PM0.3)的过滤效率高达98.37%,过滤阻力为100.67 Pa;该Pebax纳米纤维膜对细颗粒物的去除以物理过滤机制为主,即使经高低温老化处理后,过滤效率仅下降1.13个百分点;耐酸性腐蚀试验进一步验证了该Pebax纳米纤维膜具有良好的过滤稳定性.该静电纺Pebax纳米纤维膜可用于化工厂、燃煤电厂等产生的高温、酸性尾气中细颗粒物的过滤去除,具有良好的应用前景.  相似文献   

4.
以聚多巴胺(PDA)为涂层剂,静电纺聚丙烯腈(PAN)纳米纤维膜为基体,制备了PDA/PAN纳米纤维复合材料,测试多巴胺涂层处理对复合材料的表面形貌、力学性能、孔径分布、纯水通量与乳化油截留率等相关性能的影响。研究结果表明:涂层后的静电纺纳米纤维断裂强度明显增加;膜纯水通量明显增大,在涂层液质量浓度为1 mg/mL时静电纺纳米纤维膜纯水通量最高达到14 656L/(m~2·h),较未改性纳米纤维膜增加63%;在涂层液质量浓度为1.5mg/mL时纤维膜获得了最小孔径,其乳化油截留率也达到最佳值(96.1%),同时可以保证高水通量和高乳化油截留率。  相似文献   

5.
本文通过接枝共聚合方法合成了多壁碳纳米管/聚丙烯腈(MWCNTs/PAN)接枝共聚物,然后用静电纺丝装置对MWCNTs/PAN的二甲基甲酰胺(DMF)溶液进行电纺。重点研究了反应物配比、浓度、电压参数对电纺MWCNTs/PAN纳米纤维的影响。讨论了纳米纤维平均直径及直径分布的影响因素。  相似文献   

6.
采用静电纺丝技术, 以N,N-二甲基甲酰胺为溶剂, 聚丙烯腈为载体, 制备复合纳米纤维聚丙烯腈/纳米纤维素晶体/银, 并用Fourier变换红外光谱(FT-IR)、 透射电子显微镜(TEM)、 扫描电子显微镜(SEM)、 差热 热重分析(TG-DTG)和X射线衍射(XRD)等方法对复合纳米纤维的化学结构、 形貌、 热稳定性和晶体结构进行表征. 结果表明: 聚丙烯腈、 纳米纤维素晶体和银纳米粒子有机结合形成复合纳米纤维聚丙烯腈/纳米纤维素晶体/银; 复合纳米纤维的尺寸均匀, 平均直径为(214±12)nm, Ag纳米粒子在复合纳米纤维体系中均匀分布, 粒径为5~25 nm; 该复合纳米纤维对金黄色葡萄球菌和大肠杆菌的抗菌性能优异.  相似文献   

7.
用电化学沉积方法制备了1种电致变色膜——聚亚甲基蓝膜,探索了制备该膜的最佳条件并测试了薄膜的电致变色性能.结果表明:在含有2.00×10^-3mol/L硼砂和0.1 mol/L NaNO3的磷酸盐缓冲溶液中(pH 11.00),保持60℃恒温,在+0.80 V处恒电位电解40 min,可以使亚甲基蓝单体在ITO导电玻璃上聚合成聚亚甲蓝膜; 在±0.8 V电位范围内,膜颜色可在蓝色和无色间可逆变化,在618 nm处的透过率之差(ΔT)可达60%,薄膜具有很快的电变色速度,着色效率(CE)为182.6 cm2/C.  相似文献   

8.
通过静电纺丝制备了平均直径为350nm的聚丙烯腈(PAN)纳米纤维.将PAN纳米纤维分别在250,265和280℃温度下预氧化1h后,将它们在1 000℃下碳化得到碳纳米纤维.通过扫描电镜、红外光谱、差示扫描量热分析和X射线粉末衍射分析对PAN纳米纤维、预氧化后的纳米纤维及碳纳米纤维的形貌、热性能和化学结构进行了表征.结果表明,PAN纤维的最佳预氧化温度为280℃.在该温度预氧化后所得碳纤维的导电性最好,电导率为(13±0.58)S/cm.  相似文献   

9.
明胶纳米纤维膜的交联及其降解性能   总被引:2,自引:0,他引:2  
在不同配比的乙醇/水溶液中,应用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐/N-羟  相似文献   

10.
利用静电纺丝法制备了聚丙烯腈(PAN)无序微纳米纤维膜,通过控制纺丝电压,溶液浓度和进料速率并借助接触角测量仪和扫描电子显微镜(SEM)对微纳米纤维材料的纤维形貌和润湿性进行了表征和研究.结果表明,对于PAN无序微纳米纤维膜,增大纺丝电压、减小进料速率、增大溶液浓度会使微纳米纤维膜的纤维直径增大;增大纺丝电压,减小进料速率会使微纳米纤维膜接触角增大;增大浓度,会使微纳米纤维膜接触角先增大后减小.通过控制变量法对PAN无序微纳米纤维膜分析得出,相对高的纺丝电压(14 k V)和相对低的进料速率(0.50m L·h-1)以及适中的PAN溶液浓度(12%wt)可以提升PAN无序微纳米纤维膜的疏水性.此外,均匀的PAN纤维膜的微纳米结构是影响它疏水性的重要因素.  相似文献   

11.
利用静电纺丝和胺肟化改性制备胺肟聚丙烯腈(AOPAN)纳米纤维,采用原子转移自由基聚合(ATRP)的方法在AOPAN纳米纤维上接枝丙烯酸单体得到AOPAN-AA纳米纤维.通过傅里叶红外光谱(FTIR)分析AOPAN-AA纳米纤维表面化学结构.采用电感耦合等离子体发射光谱仪(ICP-AES)测试溶液中金属离子的浓度,以此研究AOPAN-AA纳米纤维的金属离子吸附性能.结果表明:AOPAN-AA纳米纤维对Fe~(3+)、Cu~(2+)、Cd~(2+)、Cr~(3+)的饱和吸附量分别为5.36、2.81、1.36和1.18mmol/g,证明其金属离子吸附性能显著,并且吸附过程基本符合Langmuir吸附模型.  相似文献   

12.
采用聚丙烯腈纤维束作为滤材,对粒度为-10μm占93%的可吸入颗粒物进行净化研究,考查了颗粒物入口浓度、过滤风速、纤维束填充率对纤维束过滤器除尘性能的影响。在最佳条件下,纤维束过滤器的最大除尘效率可达85%,随着时间的延长除尘效率会逐渐降低;压降主要受过滤风速的影响,在过滤器标准过滤风速1.0m/s时,压降仅为26~30Pa。压降和除尘效率随纤维束填充率的增加而增加,填充率1.06%时,除尘性能最佳。  相似文献   

13.
采用静电纺丝法制备聚丙烯腈(PAN)纳米纤维膜,通过扫描电子显微镜(SEM)观察纳米纤维膜形貌与纤维直径,并分析了纳米纤维膜厚度、加入不同质量分数NaCl、接收滚筒转速、热轧和平板硫化热黏合对纳米纤维膜强力、伸长率和含油污水过滤性能的影响.结果表明:随着纺丝厚度的增加,纳米纤维膜强度呈线性增加趋势,伸长率呈先增加后减小趋势;加入NaCl对纳米纤维膜强力的影响不显著;接收滚筒转速越高,沿纤维排列方向的纳米纤维膜强力呈增加趋势,垂直纤维排列方向的则呈减少趋势,两个方向的纳米纤维膜伸长率均呈下降趋势;热轧和平板硫化热黏合是提高纳米纤维膜强力最有效的方式,热轧与平板硫化热黏合方式制备的复合纤维膜的断裂强力为50~60N,断裂伸长率为50%~75%,强力约是纳米纤维膜的60倍,强度是纯纳米纤维膜的10~20倍.此外,平板硫化热黏合的复合纤维膜乳化油截留率高达98.56%,高于聚偏氯乙烯(PVDF)商品超滤膜(97.00%),且纯水通量为4 004L/(m~2·h),因此,平板硫化热黏合复合纤维膜在水处理方面具有巨大的应用潜力.  相似文献   

14.
以质量分数为12%的聚间苯二甲酰间苯二胺(PMIA)溶液为纺丝液,采用溶液喷射纺丝技术制备了直径范围为146~532nm的PMIA纳米纤维膜,探讨了面密度对纤维膜孔径结构、透气性、水通量及过滤效率的影响.结果表明,随着面密度的增加,纤维膜的平均孔径、透气量和水通量逐渐降低,过滤效率明显增加,当面密度为22.8g/m2时,纤维膜对2.5μm聚苯乙烯(PS)微球的过滤效率高达99%以上.过滤机理研究结果表明,PS微球很大程度上被拦截在纤维膜表层,膜污染程度较小.  相似文献   

15.
以聚丙烯腈(PAN)和N,N-二甲基甲酰胺(DMF)为原料,通过静电纺丝-CO2活化法制备PAN基活性碳纳米纤维,探讨活化温度对活性碳纳米纤维孔结构及孔径分布的影响,并研究了所制备的PAN基活性碳纳米纤维对亚甲基蓝(MB)的吸附性能.结果表明,随着活化温度的升高,PAN基活性碳纳米纤维的比表面积(SBET)、总孔容(Vtotal)和微孔容(Vmi)均增大,当活化温度达到950℃时,SBET、Vtotal、Vαmi、Vtmi和VDmi分别高达1 484.5 m2·g-1、0.709 cm3·g-1、0.680 cm3·g-1、0.666 cm3·g-1和0.659cm3·g-1;Langmuir模型较Freundlich模型更适合描述所制备的PAN基活性碳纳米纤维对MB的吸附过程,且ACF950在(25±1)℃对MB的饱和吸附量高达270 mg·g-1.  相似文献   

16.
静电纺纳米纤维的过滤机理及性能   总被引:3,自引:0,他引:3  
静电纺丝是种相对简单的不同种聚合物来制造超细纤维的方法.纳米纤维将来最广泛的用途是过滤.研究静电纺纳米纤维的过滤机理,测试分析不同基布与纳米纤维层复合后的过滤效率、过滤阻力及孔径的变化.结果表明在基布上铺上纳米纤维层复合后,过滤效率明显增加,压力降也有一定增加;纳米纤维层的孔径比基布孔径约小两个数量级,并且纳米纤维层孔径分布均匀、离散度小.  相似文献   

17.
利用静电纺丝和偕胺肟化改性制备偕胺肟聚丙烯腈(AOPAN)纳米纤维膜,以戊二醛为偶联剂,其两端的醛基分别与AOPAN纳米纤维膜和漆酶上的氨基反应,进而固定化漆酶.研究了戊二醛交联条件与固定化漆酶的关系,同时测定了固定化漆酶的相关性能,结果表明,当戊二醛质量分数为5%、处理时间为10h时,固定漆酶效果最好.对游离漆酶与固定化漆酶进行酶促动力学分析发现,固定化漆酶与底物具有较好的亲和性.相对游离漆酶,固定化漆酶对温度和pH值的变化也表现出更好的稳定性,同时具备良好的储存稳定性和重复使用能力.固定化漆酶在4℃下保存20d,酶相对活性保持在63.6%以上,固定化漆酶经重复使用10次,酶相对活性保持在65.7%以上.  相似文献   

18.
通过静电纺丝技术制备了 CS/PVP 质量比分别为0/100、10/90、20/80、30/70、40/60复合纳米纤维膜.通过扫描电镜、红外光谱及 X射线衍射仪对纳米纤维膜进行表征,利用电子强力机对纤维膜断裂强度进行测试.结果表明:CS/PVP质量比从0/100变化到30/70时,纤维形态良好,平均直径随着壳聚糖含量的增加而逐渐减小;质量比达到40/60时,纤维中有大量珠串,均匀性变差.FT-IR 和 XRD 图谱表明,复合纳米纤维膜中CS与PVP存在相互作用,分子之间形成了氢键;复合纳米纤维膜的断裂强度随着 CS含量的增加而增大,当壳聚糖含量达到40%时,其断裂强度为19.87 MPa.  相似文献   

19.
利用静电纺丝技术制备聚甲基丙烯酸甲酯(PMMA)/蒙脱土(OMMT)/二氧化钛(TiO_2)复合纳米纤维膜,采用扫描电子显微镜(SEM)观察纳米纤维形态,采用能谱仪(EDX)、傅里叶变换红外光谱(FTIR)等分析手段对样品的表观形态、化学结构进行表征,同时,研究复合纳米纤维膜对亚甲基蓝溶液的光催化降解性能。研究结果表明,用质量为50mg的复合纳米纤维膜作为光催化材料,在500 W汞灯、波长为365nm紫外光照射120min的条件下,对50mL浓度为5.0mg/L亚甲基蓝溶液的分解率达到79.23%,表明复合纳米纤维膜具有较好的光催化效果。  相似文献   

20.
采用KMnO4对聚丙烯腈原丝进行改性并高温延伸,借助声速取向仪、傅里叶红外光谱(FTIR)、差示扫描量热分析(DSC)及拉力试验机等分析方法,对比研究了聚丙烯腈纤维、改性聚丙烯腈纤维及预氧化纤维的结构性能的变化。结果表明:聚丙烯腈纤维进行预氧化时,聚丙烯腈纤维发生环化反应形成一种比较稳定的结构;高锰酸钾改性可以使纤维的环化反应温度提前,终止温度延后,有效缓解反应集中放热。高强度聚丙烯腈预氧化纤维的最佳制备工艺为:KMnO4浓度为4 wt%,改性时间为3 min,延伸倍率为10。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号