共查询到18条相似文献,搜索用时 62 毫秒
1.
通过分析当前运用较多的入侵检测模型的缺陷,提出了一种基于径向基函数(Radial Basic Functions)神经网络的入侵检测系统模型。该模型既克服了传统的基于规则库的入侵检测系统所存在的管理问题,又克服了传统的系统仅能判断入侵行为是否异常,而不能识别入侵行为属于哪种类型的缺陷,从而使系统能够达到实时监测网络及主机状态,来防范不可预知性入侵。该模型具有良好的易用性和可扩展性,是一种开发安全管理系统的有效手段。 相似文献
2.
入侵检测系统是当前信息安全领域的研究热点,在保障信息安全方面起着重要的作用.笔者对原有的基于RBF神经网络的入侵检测模型进行改进并给出了设计思想.该模型能将入侵检测系统的两种检测技术——误用检测和异常检测有效地结合起来,使用两层RBF神经网络训练模块,三层训练机制,在训练时间方面有较大的优势,并能实时地检测到新型攻击. 相似文献
3.
与广泛使用的BP网络模型相比,径向基函数神经网络具有训练时间短且不易收敛到局部最小的优点.将3种径向基神经网络应用到入侵检测中,用于入侵模式识别的分类和预测,从而提高入侵检测系统的检测率并降低误报率. 相似文献
4.
5.
随着计算机的普及和Internet的迅速发展,计算机系统和网络安全的漏洞问题不断暴露出来,网络恶意攻击事件不断发生,网络安全问题日益严重,因此,网络安全技术逐渐受到人们的重视。 相似文献
6.
讨论了多层神经网络算法缺陷,提出了一种基于改进反向传播(Back Propagation,BP)的快速入侵检测算法--IBP算法:在BP算法中的梯度下降算式中,加入一个动量项α[ω(t)-ω(t-1)],改善计算神经元 j到神经元i的级联权值;采用学习速率可变的策略;算法训练网络时采用批处理的样本输入方式.改进后的算法选取较大的学习速率η=0.5和η=0.65,并采用3层神经网络的结构,输入、输出样本是16维和15维,各进行100次独立仿真实验,结果证明可加快算法收敛速度,另外,仿真实验还证明:改进后的算法对初始权值的敏感性、网络所表现出的稳定性等都比传统算法性能优越. 相似文献
7.
小波神经网络结合了小波变换和神经网络的优点,具有很强的非线性映射能力和自适应、自学习能力,特别适合于入侵检测系统.但小波神经网络的也有易于陷入局部极小值、收敛速度慢的弱点.对此,本文引入遗传算法来优化产生小波神经网络的初始权值与阈值等,确定一个较好的搜索空间,从而克服小波神经网络易于陷入局部极小值的缺点;同时引入了阻尼牛顿算法,在遗传算法所确定了的搜索空间中对网络进行快速训练,解决传统小波神经网络收敛速度慢的问题,两者构成阻尼牛顿-遗传-小波神经网络.仿真结果表明该方法可行,使神经网络的逼近能力和泛化能力得到了显著提高. 相似文献
8.
针对传统的网络安全防范技术存在的缺陷和入侵检测在动态安全模型中的重要地位和作用,提出了基于模糊理论、神经网络和遗传算法结合的新方法--动态模糊神经网络,并且给出基于动态模糊神经网络的入侵检测系统构建体系.该系统在实际应用中收到了较好的效果. 相似文献
9.
本文是采用改进BP神经网络的拟牛顿算法,并利用matlab提供的神经网络工具箱构建BP神经网络入侵检测系统。此算法的优越性在于收敛速度比较快,特别对于较高维数的问题。测试后证明所构建的系统是可行的,能够检测到新的入侵行为。 相似文献
10.
针对普通BP神经网络算法学习收敛速度慢、易造成局部极小的问题,提出一种改进的BP神经网络入侵检测方法,其采用拟牛顿的方法进行学习,即对目标矩阵求二阶导数.运用该方法能够有效提高学习速度,消除局部极小.仿真结果表明,改进的BP神经网络入侵检测方法收敛速度快,比标准的BP入侵检测方法误检率低,能够很好地提高学习效率,更加有效地检测攻击行为. 相似文献
11.
YAN Huai-zhi HU Chang-zhen TAN Hui-min .Information Security Counter-Measure Technology Research Center Beijing Institute of Technology Beijing China .National Key Laboratory of Mechatronics Engineering Control Beijing Institute of Technology Beijing China 《武汉大学学报:自然科学英文版》2005,10(1):119-122
A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management. 相似文献
12.
基于模糊自组织神经网络的入侵识别方法 总被引:1,自引:0,他引:1
金一泓 《华中科技大学学报(自然科学版)》2003,(Z1)
将模糊聚类和神经网络技术相结合 ,提出了基于模糊自组织神经网络的入侵识别方法 .数据样本的分类结果映射到 4 0个神经元的输出平面上 ,连接权矢量图反映了输入模式的统计特征和各聚类的神经元范围 .聚类层求出各分类的隶属函数 ,对端口扫描类型的攻击进行了成功的仿真识别 相似文献
13.
文章介绍了神经网络技术在入侵检测上的应用现状,讨论了BP神经网络算法中存在的一些问题及改进措施,开发了一个基于神经网络的入侵检测系统的原型. 相似文献
14.
入侵检测技术是解决网络安全的一种有效手段。文中提供一个基于规则和神经网络系统的入侵检测模型。主要思想是利用神经网络的分类能力来识别未知攻击,使用基于规则系统识别已知攻击。神经网络对DOS和Probing攻击有较高的识别率,而基于规则系统对R2L和U2R攻击检测更有效。因此该模型能提高对各种攻击的检出率。最后对模型存在的问题及入侵检测技术的发展趋势做了讨论。 相似文献
15.
YAOYu YUGe GAOFu-xiang 《武汉大学学报:自然科学英文版》2005,10(1):115-118
An MLP(Multi-Layer Perceptron)/ Elman neural network is proposed in this paper, which realizes classification with memory of past events using the real-time classification of MI.P and the memorial functionality of Elman. The system‘s sensitivity for the memory of past events can be easily reconfigured without retraining the whole network. This approach can be used for both misuse and anomaly detection system. The intrusion detection systems(IDSs) using the hybrid MLP/Elman neural network are evaluated by the intrusion detection evaluation data sponsored by U. S. Defense Advanced Research Projects Agency (DARPA). The results of experiment are presented in Receiver Operating Characteristic (ROC) curves. The capabilites of these IDSs to identify Deny of Service(DOS) and probing attacks are enhanced. 相似文献
16.
17.
日益严峻的网络安全形势和网络协议本身的缺陷,使传统的防火墙防御的方式无法胜任。为提高对网络入侵防御能力,提出了模糊神经网络集成的入侵检测模型:首先抓取网络中的数据流,使用模糊数学的方法对数据记录入侵特征预处理。然后用集成的模糊神经网络模块接收预处理模块导入的训练数据和测试数据,通过反复训练学习,把各子树中节点的权值收敛到确定值。训练完成后,模型用于检测网络中的数据。响应模块接收模糊神经网络模块处理结果做出相应的响应。实验使用KDDCUP99网络入侵检测数据集对模型进行评测,并与单一神经网络模型相比较。结果表明模糊神经网络集成的方法检测结果比较稳定,在整体上比单一神经网络的误报率、漏报率和错报率有所降低,准确率和数据集泛化能力明显提高。 相似文献
18.
YANG Degang CHEN Guo WANG Hui LIAO Xiaofeng 《武汉大学学报:自然科学英文版》2007,12(1):147-150
A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intrusion. The recognition process includes three stages: (1) feature selection and data normalization processing;(2) learning the training data selected from the feature data set; (3) identifying the intrusion and generating the result report of machine condition classification. Experimental results show that the proposed method is promising in terms of detection accuracy, computational expense and implementation for intrusion detection. 相似文献