首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transparency and coherence in human motion perception   总被引:3,自引:0,他引:3  
When confronted with moving images, the visual system often must decide whether the motion signals arise from a single object or from multiple objects. A special case of this problem arises when two independently moving gratings are superimposed. The gratings tend to cohere and move unambiguously in a single direction (pattern motion) instead of moving independently (component motion). Here we report that the tendency to see pattern motion depends very strongly on the luminance of the intersections (that is, to regions where the gratings overlap) relative to that of the gratings in a way that closely parallels the physics of transparency. When the luminance of these regions is chosen appropriately, pattern motion is destroyed and replaced by the appearance of two transparent gratings moving independently. The observations imply that motion detecting mechanisms in the visual system must have access to tacit 'knowledge' of the physics of transparency and that this knowledge can be used to segment the scene into different objects. The same knowledge could, in principle, be used to avoid confusing shadows with real object boundaries.  相似文献   

2.
Neural synchrony correlates with surface segregation rules   总被引:4,自引:0,他引:4  
To analyse an image, the visual system must decompose the scene into its relevant parts. Identifying distinct surfaces is a basic operation in such analysis, and is believed to precede object recognition. Two superimposed gratings moving in different directions (plaid stimuli) may be perceived either as two surfaces, one being transparent and sliding on top of the other (component motion) or as a single pattern whose direction of motion is intermediate to the component vectors (pattern motion). The degree of transparency, and hence the perception, can be manipulated by changing only the luminance of the grating intersections. Here we show that neurons in two visual cortical areas--A18 and PMLS--synchronize their discharges when responding to contours of the same surface but not when responding to contours belonging to different surfaces. The amplitudes of responses correspond to previously described rate predictions for component and pattern motion, but, in contrast to synchrony, failed to reflect the transition from component to pattern motion induced by manipulating the degree of transparency. Thus, dynamic changes in synchronization could encode, in a context-dependent way, relations among simultaneous responses to spatially superimposed contours and thereby bias their association with distinct surfaces.  相似文献   

3.
Parallel processing of motion and colour information   总被引:1,自引:0,他引:1  
T Carney  M Shadlen  E Switkes 《Nature》1987,328(6131):647-649
When the two eyes are confronted with sufficiently different versions of the visual environment, one or the other eye dominates perception in alternation. A similar situation may be created in the laboratory by presenting images to the left and right eyes which differ in orientation or colour. Although perception is dominated by one eye during rivalry, there are a number of instances in which visual processes nevertheless continue to integrate information from the suppressed eye. For example the interocular transfer of the motion after-effect is undiminished when induced during binocular rivalry. Thus motion information processing may occur in parallel with the rivalry process. Here we describe a novel example in which the visual system simultaneously exhibits binocular rivalry and vision that integrates signals from both eyes. This apparent contradiction is resolved by postulating parallel visual processes devoted to the analyses of colour and motion information. Counterphased gratings are viewed dichoptically such that for one eye the grating is composed of alternating yellow and black stripes (luminance) while for the other it is composed of alternating red and green stripes (chrominance). When the gratings are fused, a moving grating is perceived. A consistent direction of motion can only be achieved if left and right monocular signals are integrated by the nervous system. Yet the apparent colour of the binocular percept alternates between red-green and yellow-black. These observations demonstrate the segregation of processing by the early motion system from that affording the perception of colour. Although, in this stimulus, colour information in itself can play no part in the cyclopean perception of motion direction, colour is carried along perceptually (filled in) by the moving pattern which is integrated from both eyes.  相似文献   

4.
The perception of moving plaids reveals two motion-processing stages   总被引:3,自引:0,他引:3  
L Welch 《Nature》1989,337(6209):734-736
When viewed through a small aperture, the perceived motion exhibited by a long moving line or grating is ambiguous. This situation prevails because even a perfect machine could only detect motion perpendicular to a moving contour, so motion parallel to a contour is undetectable. The human visual system views the world through an aperture array--the neural receptive fields. Therefore a moving object is viewed through many small apertures and the motion within many of those apertures is ambiguous. This ambiguity may be resolved by monitoring the motion of a distinctive feature, such as a line-end or corner, and attributing to the larger object the motion of the feature. Alternatively, Adelson and Movshon have suggested that moving images are processed in two stages, that is, they are first decomposed into one-dimensional components which are later recombined to generate perceived object motion. For a moving plaid, defined as the sum of two drifting gratings, these alternative models generate different predictions concerning the resolution of the plaid's motion ambiguity. A feature monitor would respond to the motion of the intersections between gratings, whereas the two-stage motion processor would first decompose the plaid into its constituent gratings and subsequently recombine them to generate the perception of a moving plaid. Using speed discrimination to distinguish between the two models, I find that discrimination thresholds reflect the speed of a plaid's component gratings, rather than the speed of the plaid itself. This result supports the two-stage model. Although speed discrimination is limited by component processing, observers cannot directly access component speed. The only perceptually accessible velocity signal is generated by the second-stage pattern processing.  相似文献   

5.
Thiele A  Stoner G 《Nature》2003,421(6921):366-370
Natural visual scenes are cluttered with multiple objects whose individual features must somehow be selectively linked (or 'bound') if perception is to coincide with reality. Recent neurophysiological evidence supports a 'binding-by-synchrony' hypothesis: neurons excited by features of the same object fire synchronously, while neurons excited by features of different objects do not. Moving plaid patterns offer a straightforward means to test this idea. By appropriate manipulations of apparent transparency, the component gratings of a plaid pattern can be seen as parts of a single coherently moving surface or as two non-coherently moving surfaces. We examined directional tuning and synchrony of area-MT neurons in awake, fixating primates in response to perceptually coherent and non-coherent plaid patterns. Here we show that directional tuning correlated highly with perceptual coherence, which is consistent with an earlier study. Although we found stimulus-dependent synchrony, coherent plaids elicited significantly less synchrony than did non-coherent plaids. Our data therefore do not support the binding-by-synchrony hypothesis as applied to this class of motion stimuli in area MT.  相似文献   

6.
C D Salzman  K H Britten  W T Newsome 《Nature》1990,346(6280):174-177
Neurons in the visual cortex respond selectively to perceptually salient features of the visual scene, such as the direction and speed of moving objects, the orientation of local contours, or the colour or relative depth of a visual pattern. It is commonly assumed that the brain constructs its percept of the visual scene from information encoded in the selective responses of such neurons. We have now tested this hypothesis directly by measuring the effect on psychophysical performance of modifying the firing rates of physiologically characterized neurons. We required rhesus monkeys to report the direction of motion in a visual display while we electrically stimulated clusters of directionally selective neurons in the middle temporal visual area (MT, or V5), an extrastriate area that plays a prominent role in the analysis of visual motion information. Microstimulation biased the animals' judgements towards the direction of motion encoded by the stimulated neurons. This result indicates that physiological properties measured at the neuronal level can be causally related to a specific aspect of perceptual performance.  相似文献   

7.
一种可重构空间四杆机构   总被引:1,自引:0,他引:1  
提出一种可重构空间四杆机构,其具有两种不同的工作模式,模式Ⅰ为一个转动运动,模式Ⅱ为一个平移平动,两种运动模式进行切换的初始位形具有瞬时的一个转动和一个平动.将可重构空间四杆机构与一个具有两移动和两转动的串联支链相连,构成一种具有两种不同工作模式的可重构混联支链.利用3条可重构混联支链连接并联机构的固定平台和运动平台,可得到一种新型可重构并联机构,通过控制3条可重构混联支链分别在两种不同工作模式间切换,可重构并联机构可实现4种不同的三自由度运动模式.利用螺旋理论分析和证明了上述结论.  相似文献   

8.
Hearing visual motion in depth   总被引:9,自引:0,他引:9  
Kitagawa N  Ichihara S 《Nature》2002,416(6877):172-174
Auditory spatial perception is strongly affected by visual cues. For example, if auditory and visual stimuli are presented synchronously but from different positions, the auditory event is mislocated towards the locus of the visual stimulus-the ventriloquism effect. This 'visual capture' also occurs in motion perception in which a static auditory stimulus appears to move with the visual moving object. We investigated how the human perceptual system coordinates complementary inputs from auditory and visual senses. Here we show that an auditory aftereffect occurs from adaptation to visual motion in depth. After a few minutes of viewing a square moving in depth, a steady sound was perceived as changing loudness in the opposite direction. Adaptation to a combination of auditory and visual stimuli changing in a compatible direction increased the aftereffect and the effect of visual adaptation almost disappeared when the directions were opposite. On the other hand, listening to a sound changing in intensity did not affect the visual changing-size aftereffect. The results provide psychophysical evidence that, for processing of motion in depth, the auditory system responds to both auditory changing intensity and visual motion in depth.  相似文献   

9.
The current work examined neural substrates of perceptual grouping in human visual cortex using event-related potential (ERP) recording. Stimulus arrays consisted of local elements that were either evenly spaced (uniform stimuli) or grouped into columns or rows by proximity or color similarity (grouping stimuli). High-density ERPs were recorded while subjects identified orientations of perceptual groups in stimulus arrays that were presented randomly in one of the four quadrants of the visual field.Both uniform and grouping stimulus arrays elicited an early ERP component (C1), which peaked at about 70ms after stimulus onset and changed its polarity as a function of stimulated elevations. Dipole modeling based on realistichead boundary-element models revealed generators of the C1 component in the calcarine cortex. The C1 was modulated by perceptual grouping of local elements based on proximity, and this grouping effect was stronger in the upper than in the lower visual field. The findings provide ERP evidence for the engagement of human primary visual cortex in the early stage of perceptual grouping.  相似文献   

10.
Tong F  Engel SA 《Nature》2001,411(6834):195-199
To understand conscious vision, scientists must elucidate how the brain selects specific visual signals for awareness. When different monocular patterns are presented to the two eyes, they rival for conscious expression such that only one monocular image is perceived at a time. Controversy surrounds whether this binocular rivalry reflects neural competition among pattern representations or monocular channels. Here we show that rivalry arises from interocular competition, using functional magnetic resonance imaging of activity in a monocular region of primary visual cortex corresponding to the blind spot. This cortical region greatly prefers stimulation of the ipsilateral eye to that of the blind-spot eye. Subjects reported their dominant percept while viewing rivalrous orthogonal gratings in the visual location corresponding to the blind spot and its surround. As predicted by interocular rivalry, the monocular blind-spot representation was activated when the ipsilateral grating became perceptually dominant and suppressed when the blind-spot grating became dominant. These responses were as large as those observed during actual alternations between the gratings, indicating that rivalry may be fully resolved in monocular visual cortex. Our findings provide the first physiological evidence, to our knowledge, that interocular competition mediates binocular rivalry, and indicate that V1 may be important in the selection and expression of conscious visual information.  相似文献   

11.
考虑在无界区域中Bessel函数下多个布朗运动和的首冲时问题.介绍了利用高斯计算技巧和Slepian不等式得到的单个布朗运动在无界开区域Rd+1中首冲时的上﹑下界的渐近估计,然后考虑了多个布朗运动的和在Bessel函数下首冲时的上﹑下界渐近估计.首先考虑在移动边界下的首冲时问题,之后再推广到无界区域中多个布朗运动的和.说明单个的布朗运动首冲时问题,可以推广到多个布朗运动之和的首冲时问题.  相似文献   

12.
Tadin D  Lappin JS  Gilroy LA  Blake R 《Nature》2003,424(6946):312-315
Centre-surround receptive field organization is a ubiquitous property in mammalian visual systems, presumably tailored for extracting image features that are differentially distributed over space. In visual motion, this is evident as antagonistic interactions between centre and surround regions of the receptive fields of many direction-selective neurons in visual cortex. In a series of psychophysical experiments we make the counterintuitive observation that increasing the size of a high-contrast moving pattern renders its direction of motion more difficult to perceive and reduces its effectiveness as an adaptation stimulus. We propose that this is a perceptual correlate of centre-surround antagonism, possibly within a population of neurons in the middle temporal visual area. The spatial antagonism of motion signals observed at high contrast gives way to spatial summation as contrast decreases. Evidently, integration of motion signals over space depends crucially on the visibility of those signals, thereby allowing the visual system to register motion information efficiently and adaptively.  相似文献   

13.
Serial and parallel processing of visual feature conjunctions   总被引:10,自引:0,他引:10  
K Nakayama  G H Silverman 《Nature》1986,320(6059):264-265
Treisman and others have reported that the visual search for a target distinguished along a single stimulus dimension (for example, colour or shape) is conducted in parallel, whereas the search for an item defined by the conjunction of two stimulus dimensions is conducted serially. For a single dimension the target 'pops out' and the search time is independent of the number of irrelevant items in the set. For conjunctions, the search time increases as the set becomes larger. Thus, it seems that the visual system is incapable of conducting a parallel search over two stimulus dimensions simultaneously. Here we extend this conclusion for the conjunction of motion and colour, showing that it requires a serial search. We also report two exceptions: if one of the dimensions in a conjunctive search is stereoscopic disparity, a second dimension of either colour or motion can be searched in parallel.  相似文献   

14.
利用不同人体之间纹理特征相异的特点提出一种检测特定目标的方法。首先,在背景差分图像中标识不同的运动区域,确定这些区域的极大概率、能量和熵3种特征向量;再把这3种向量进行相似性处理;最后比较处理数据的相似程度,从而达到对特定运动目标识别的目的。通过实验表明,这种方法不止在单幅图像中能识别出其中的特定目标,而且能计算序列图像中同一特定目标的相关性。  相似文献   

15.
ON and OFF pathways in Drosophila motion vision   总被引:1,自引:0,他引:1  
Joesch M  Schnell B  Raghu SV  Reiff DF  Borst A 《Nature》2010,468(7321):300-304
Motion vision is a major function of all visual systems, yet the underlying neural mechanisms and circuits are still elusive. In the lamina, the first optic neuropile of Drosophila melanogaster, photoreceptor signals split into five parallel pathways, L1-L5. Here we examine how these pathways contribute to visual motion detection by combining genetic block and reconstitution of neural activity in different lamina cell types with whole-cell recordings from downstream motion-sensitive neurons. We find reduced responses to moving gratings if L1 or L2 is blocked; however, reconstitution of photoreceptor input to only L1 or L2 results in wild-type responses. Thus, the first experiment indicates the necessity of both pathways, whereas the second indicates sufficiency of each single pathway. This contradiction can be explained by electrical coupling between L1 and L2, allowing for activation of both pathways even when only one of them receives photoreceptor input. A fundamental difference between the L1 pathway and the L2 pathway is uncovered when blocking L1 or L2 output while presenting moving edges of positive (ON) or negative (OFF) contrast polarity: blocking L1 eliminates the response to moving ON edges, whereas blocking L2 eliminates the response to moving OFF edges. Thus, similar to the segregation of photoreceptor signals in ON and OFF bipolar cell pathways in the vertebrate retina, photoreceptor signals segregate into ON-L1 and OFF-L2 channels in the lamina of Drosophila.  相似文献   

16.
K Yarrow  P Haggard  R Heal  P Brown  J C Rothwell 《Nature》2001,414(6861):302-305
When voluntary saccadic eye movements are made to a silently ticking clock, observers sometimes think that the second hand takes longer than normal to move to its next position. For a short period, the clock appears to have stopped (chronostasis). Here we show that the illusion occurs because the brain extends the percept of the saccadic target backwards in time to just before the onset of the saccade. This occurs every time we move the eyes but it is only perceived when an external time reference alerts us to the phenomenon. The illusion does not seem to depend on the shift of spatial attention that accompanies the saccade. However, if the target is moved unpredictably during the saccade, breaking perception of the target's spatial continuity, then the illusion disappears. We suggest that temporal extension of the target's percept is one of the mechanisms that 'fill in' the perceptual 'gap' during saccadic suppression. The effect is critically linked to perceptual mechanisms that identify a target's spatial stability.  相似文献   

17.
Visual search for a conjunction of movement and form is parallel   总被引:7,自引:0,他引:7  
P McLeod  J Driver  J Crisp 《Nature》1988,332(6160):154-155
Treisman has proposed when a human subject performs a visual search, the search is parallel for targets defined by a single feature, and serial for targets defined by a conjunction of features. Here we report that this is not true for targets defined by a conjunction of the features movement and form. Detection of a moving X among randomly distributed moving Os and static Xs is parallel. Search is uninfluenced by the stationary stimuli despite their spatial intermingling with the moving items. Thus, attention can be restricted to a spatially dispersed perceptual group, defined by common movement. This contradicts previous conclusions from visual search experiments that attention can only be assigned to contiguous regions of visual space. The search process first segregates the array into moving and stationary items, and then examines the moving group for the target form. Cells in the middle temporal region (cortical area MT) have the properties required to perform these operations.  相似文献   

18.
fMRI evidence for objects as the units of attentional selection.   总被引:18,自引:0,他引:18  
K M O'Craven  P E Downing  N Kanwisher 《Nature》1999,401(6753):584-587
Contrasting theories of visual attention emphasize selection by spatial location, visual features (such as motion or colour) or whole objects. Here we used functional magnetic resonance imaging (fMRI) to test key predictions of the object-based theory, which proposes that pre-attentive mechanisms segment the visual array into discrete objects, groups, or surfaces, which serve as targets for visual attention. Subjects viewed stimuli consisting of a face transparently superimposed on a house, with one moving and the other stationary. In different conditions, subjects attended to the face, the house or the motion. The magnetic resonance signal from each subject's fusiform face area, parahippocampal place area and area MT/MST provided a measure of the processing of faces, houses and visual motion, respectively. Although all three attributes occupied the same location, attending to one attribute of an object (such as the motion of a moving face) enhanced the neural representation not only of that attribute but also of the other attribute of the same object (for example, the face), compared with attributes of the other object (for example, the house). These results cannot be explained by models in which attention selects locations or features, and provide physiological evidence that whole objects are selected even when only one visual attribute is relevant.  相似文献   

19.
Arnold DH  Johnston A 《Nature》2003,425(6954):181-184
Borders defined by small changes in brightness (luminance contrast) or by differences in colour (chromatic contrast) appear to move more slowly than those defined by strong luminance contrast. As spatial coding is influenced by motion, if placed in close proximity, the different types of moving border might appear to drift apart. Using this configuration, we show here that observers instead report a clear illusory spatial jitter of the low-luminance-contrast boundary. This visible interaction between motion and spatial-position coding occurred at a characteristic rate (approximately 22.3 Hz), although the stimulus motion was continuous and invariant. The jitter rate did not vary with the speed of movement. The jitter was not due to small involuntary movements of the eyes, because it only occurred at a specific point within the stimulus, the low-luminance-contrast boundary. These findings show that the human visual system contains a neural mechanism that periodically resolves the spatial conflict created by adjacent moving borders that have the same physical but different perceptual speeds.  相似文献   

20.
Pack CC  Born RT 《Nature》2001,409(6823):1040-1042
A critical step in the interpretation of the visual world is the integration of the various local motion signals generated by moving objects. This process is complicated by the fact that local velocity measurements can differ depending on contour orientation and spatial position. Specifically, any local motion detector can measure only the component of motion perpendicular to a contour that extends beyond its field of view. This "aperture problem" is particularly relevant to direction-selective neurons early in the visual pathways, where small receptive fields permit only a limited view of a moving object. Here we show that neurons in the middle temporal visual area (known as MT or V5) of the macaque brain reveal a dynamic solution to the aperture problem. MT neurons initially respond primarily to the component of motion perpendicular to a contour's orientation, but over a period of approximately 60 ms the responses gradually shift to encode the true stimulus direction, regardless of orientation. We also report a behavioural correlate of these neural responses: the initial velocity of pursuit eye movements deviates in a direction perpendicular to local contour orientation, suggesting that the earliest neural responses influence the oculomotor response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号