首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 火灾集中排烟模式下,隧道两端射流风机需向隧道内部补充新风,以使排烟区域向火源附近排烟口方向集中,缩小烟气影响范围。从烟气控制效果出发,提出排烟效率、烟气蔓延范围、能见度3个指标作为判定合理机械补风的依据。以某越江隧道工程集中排烟为例,采用火灾动力学模拟软件FDS对-2.8%坡度隧道在不同排烟口开启方案(上游3个/下游3个、上游2个/下游4个、上游1个/下游5个)、不同纵向补风风速(0、1、2、3m/s)下的12 组火灾工况进行模拟计算。结果表明:纵向补风风速对集中排烟效果影响显著,本隧道区段火灾集中排烟时的合理纵向补风风速为2m/s,小于纵向通风时的临界风速值。  相似文献   

2.
为研究不同火源位置和排烟风速对隧道火灾烟气蔓延的影响,以辽宁省海棠山隧道部分区段作为设计原型,建立1∶12缩比例试验平台,以温度、CO_2气体作为观测对象进行研究.并通过PyroSim软件模拟结合对比,分析了火源与排烟口所在直线与地面形成的倾角与排烟风速对火灾蔓延的影响.结果表明:当排烟风速达到0.45m/s时,对于18.95kW以下火源功率可以有效防止其烟气回流;烟气温度与CO_2体积质量随着排烟风速的增大峰值明显减小;风速越大,排烟效果越好;火源与排烟口所在直线与地面形成的倾角为45°时,排烟综合效果相对最好.  相似文献   

3.
为探明隧道火灾临界风速时的火区通风阻力,并明确射流风机局部风流场对隧道烟气蔓延的影响规律,采用计算流体动力学软件ANSYS Fluent,建立了考虑20 MW火灾长度800 m的1∶1隧道数值模型。通过开展5 MW隧道火灾数值计算和1∶10物理模型试验,以临界风速和温度为指标,验证所建数值模型的合理性和适用性。确定隧道火灾临界风速及火区通风阻力,并在临界风速条件下,进行火源与射流风机不同相对位置时隧道火灾场景的数值计算。研究结果表明:300 m隧道内5 MW火灾,临界风速约为2.0 m/s,火区通风阻力约为3.0 Pa; 800 m隧道内20 MW火灾,临界风速约为2.8 m/s,火区通风阻力约为7.0 Pa。在20 MW火灾临界风速条件下,当火源位于风机下游40 m范围内,烟气分层完全被破坏,火源下游区域不利于人员疏散,当火源位于风机下游80及120 m处,烟气状态分别为分层较好和分层良好,相应的火灾危险区域分别为火源下游300 m范围内和火源下游100 m范围内;当火源位于风机的上游,烟气蔓延至风机位置前分层良好,蔓延至风机位置后,随高速射流迅速向下部扩散并充满隧道断面,风机下游区...  相似文献   

4.
为了解不同通风方式下隧道火灾烟气的运移情况,开展了管道热烟实验;进行了不同通风方式下火灾烟气运移的数值模拟;分别采用理论计算和数值模拟方法得到了不同火源热释放速率的纵向临界风速。结果表明:纵向风速较小时管道中的烟气呈现层状运动,风速较大时烟气分层现象消失;车厢内烟气的温度高于车厢外相同高度的烟气温度;采用数值模拟得到的临界风速低于弗洛德临界模型的计算结果;相同火灾功率时压入式通风临界风速比抽出式通风临界风速略小。当隧道内产生速度不小于2 m/s的纵向风时,可将烟气限制在火源的下游隧道。  相似文献   

5.
为研究多出入匝道的存在对隧道纵向排烟系统效率的影响,采用通风网络对某多匝道城市地下道路分段纵向排烟系统的烟气控制效果进行了模拟分析,得到了不同火灾场景中风机运行的最佳策略。结果表明,对于该城市地下道路而言,火灾发生时各段排烟风机不必全部运行即可达到所要求的临界风速值,火源段下游竖井附近风机需逆转运行才能防止竖井上游烟气向下游扩散,从而提高其排烟效率;若主线隧道发生火灾,匝道风机最好停止运行,以帮助主线隧道达到较好得控烟效果。  相似文献   

6.
排烟口布置方式对于火灾时期的排烟系统的排烟效果影响较大,为了对比分析排烟口布置方式对侧室-通道结构火灾时期排烟效果的影响,利用FDS火灾模拟软件对"侧室-通道"结构火灾时期排烟口顺通道走向上的不同布置方式的排烟效果进行了模拟研究。对比分析了排烟口均匀布置与集中布置、靠近疏散出口布置与靠近火源布置四种工况条件下的排烟效果;结果表明:排烟口均匀布置比集中布置时疏散出口区域烟气温度低5.4%,能见度提高10%;靠近火源布置比靠近疏散出口布置时疏散出口区域烟气温度低11.5%。  相似文献   

7.
以重庆某一段349 m长的一端连接地下车站另外一端和室外相通的地铁区间隧道为例,开展全尺寸的火灾实验和数值模拟分析,研究一端开敞的地铁区间隧道烟气流动特性。分析火源在隧道中心位置、不同热释放速率条件下隧道内火灾烟气蔓延速率、隧道内烟气最高温度以及烟气温度在隧道纵向分布的特征,并对比分析利用区间隧道事故风口进行机械排烟和机械送风的烟气控制模式效果,提出描述区间隧道断面形状对烟气流动特性影响的参数。研究结果表明:烟气蔓延速率受纵向风速和车站烟囱效应作用影响,火源上游区域烟气蔓延速率较小,烟气回流距离比两端开敞的公路隧道经验公式计算值小,隧道内烟气最高温度比Kurioka预测模型计算值小,隧道顶部上游的烟气温度纵向分布服从指数衰减规律;将隧道烟气最高温升预测模型应用于形状系数小于1的区间隧道需要进一步修正;区间隧道内靠近地下车站的事故风口,采用机械排烟或机械送风模式,可以有效排除着火区间隧道内的烟气;事故风口机械通风量及其运行模式的选择需综合考虑隧道地理形式、火源功率、疏散方式等因素。  相似文献   

8.
隧道一旦发生火灾事故,火源上游蔓延烟气温度的高低决定着司乘人员逃生的危险程度。通过分析在1/20小比例尺寸隧道模型中开展的26种隧道较大火灾规模实验场景所对应的实验数据,研究了不同燃料类型、不同隧道截面尺寸的隧道火灾在不同纵向通风风速工况下对火源上游烟气温度的影响。研究结果表明,隧道宽度和纵向风速对顶棚下方烟气温度最大温升影响不大,而隧道高度对其影响较大;此外火源上游烟气温度随着纵向风速的增大而减小,随着隧道横截面尺寸的增大而增大;最后给出了隧道火灾顶棚下方火源上游烟气无量纲温升与无量纲距离的关系模型。  相似文献   

9.
地铁隧道火灾事故通风方式数值模拟   总被引:2,自引:0,他引:2  
为了有效解决地铁隧道火灾时期烟气流动及其毒性分布对人员疏散的影响问题,以天津地铁区间隧道为研究对象,针对火灾列车停留在隧道中部的火灾工况,利用FLUENT软件,采用简化的PDF燃烧模型、浮力修正的k-ε湍流模型和P-1辐射模型,对不同事故通风方式下隧道内烟气进行数值模拟,并根据烟气的"边界层吸附效应"原理,论证模拟效果。结果表明:不同通风方式对隧道烟气蔓延范围、温度及毒性分布的影响较大;10MW火灾规模时,地铁隧道采用开放式推迟加压的通风方式能够在有效引导烟气流动的同时,为人员提供更充裕的疏散时间。该研究成果对地铁隧道火灾时期通风排烟的有效组织和人员安全疏散具有一定参考价值和指导意义。  相似文献   

10.
城市地下联系通道火灾通风排烟设计方法   总被引:1,自引:0,他引:1  
 城市地下联系通道是一种新型地下交通形式,其火灾通风排烟设计较一般城市直线型隧道更为复杂。针对地下联系通道的构造特点,提出火灾时将车行通道视为一个独立于地下车库的构筑物,依据竖井和出入口布局,利用防火卷帘将整个通道分隔成多个排烟控制区段,使烟气在设定排烟区段内沿车行方向排出地面的火灾通风排烟设计方法。以苏州火车站UTLT为依托工程,将其划分为8个排烟控制区段和3类通风排烟组织方式,利用FLUENT对典型场景火灾烟气蔓延进行模拟计算。模拟结果表明,烟气被限制在设定排烟区段内流动并排出地面,且防止了烟气逆流产生,可有效保证火源下游车辆和火源上游人员的逃生安全,验证了火灾通风排烟设计的合理性。  相似文献   

11.
地铁隧道火灾烟气控制是城市公共安全的一个重要组成部分。在分析地铁隧道火灾烟气流动主要影响因素的基础上,将地铁隧道通风和排烟系统作为一个整体考虑,引入地铁隧道火灾烟气的浮力效应和热阻效应,建立了隧道通风网络火灾模拟的数学模型,分析了地铁隧道火灾烟气逆流的临界条件、临界流速、隧道风流及烟流流速与火灾强度的变化关系,为地铁隧道火灾烟气控制和事故应急处理提供科学依据。  相似文献   

12.
研究坡度隧道火灾排烟方法有助于隧道火灾中人员的救援与逃生.本文采用数值模拟方法研究了半横向通风方式下坡度隧道火灾过程中的排烟方法,分析了不同排烟方法时的排烟范围均匀系数λ和排烟热效率α.理论排烟量计算结果表明:坡度为0.0%~1.5%时,标准排烟方法可以有效地控制烟气在隧道内蔓延;当坡度在1.5%~3.0%范围内时,下坡方向烟气由于浮力的作用被控制在排烟口附近,此时为了有效排烟并同时提高风机排烟热效率,可采用上坡单侧排烟方法;当坡度大于3.0%时,由于烟囱效应作用使得隧道内的烟气蔓延速度加快,烟气迅速逃离排烟口蔓延至隧道出口,此时应在上坡方向增加纵向通风以抑制烟气的回流,才能更好地限制烟气蔓延.  相似文献   

13.
随着公路隧道向长大方向的发展,隧道内的行车速度和密度加大,隧道中的车辆因互相撞击、货物的自燃等原因引起隧道火灾事故的几率有增加的趋势。而风速对隧道中的火灾影响巨大。本文运用FDS软件,分别选择中小型火灾(火源功率为3MW和20MW),对隧道的临界风速进行数值模拟,刻划了其纵向通风时临界风速的分布情况。模拟结果表明:对中小型火灾,在临界风速下可以有效地抑止烟气的回流,为上游人员的撤离创造良好的条件;而下游则应该尽快疏导交通,以减少烟气扩散对下游的疏散的影响。临界风速的设置也有利于保护隧道结构。  相似文献   

14.
随着公路隧道向长大方向的发展,隧道内的行车速度和密度加大,隧道中的车辆因互相撞击、货物的自燃等原因引起隧道火灾事故的几率有增加的趋势.而风速对隧道中的火灾影响巨大.本文运用FDS软件,分别选择中小型火灾(火源功率为3MW和20MW),对隧道的临界风速进行数值模拟,刻划了其纵向通风时临界风速的分布情况.模拟结果表明对中小型火灾,在临界风速下可以有效地抑止烟气的回流,为上游人员的撤离创造良好的条件;而下游则应该尽快疏导交通,以减少烟气扩散对下游的疏散的影响.临界风速的设置也有利于保护隧道结构.  相似文献   

15.
 为研究动态火源对隧道拱顶温度场分布影响规律,针对隧道中动态火源火灾,在自然通风条件下,静止、40km/h及60km/h等速度的20MW火源在隧道内穿行的火灾过程,采用火灾动力学模拟器Fire Dynamic Simulator(FDS)进行火灾场景的模拟与计算.重点对火源在隧道行进过程中拱顶沿纵向温度分布、温度峰值变化规律及影响因素进行分析.研究结果表明,通风是影响隧道火灾温度的主要因素,移动火源在一定程度上打破了隧道内由于顶棚射流引起的热烟气与冷空气的动态循环机制,活塞风尾段涡流会引起隧道流场变化,一定程度阻碍了燃烧释放热量向火源行进逆向的扩散,并将高温气流带向其运动方向.  相似文献   

16.
地铁站台发生火灾时,不同排烟模式对烟气流动的影响十分显著。文中以西安某地铁站为对象,采用FDS火灾模拟软件,研究传统排烟方式与增加隧道风机辅助排烟方式的排烟效果。对比分析自然排烟、站台排烟、隧道风机辅助站台排烟3种模式在不同火源位置时的楼梯口风速、人眼特征高度处温度、能见度、CO浓度分布。结果表明,火源位于站台中央时,楼梯两侧均有烟气蔓延,相比站台排烟模式,采取隧道风机辅助站台排烟模式后,站台温度下降约16.7%,CO浓度下降40%,且无烟气蔓延至站厅层。  相似文献   

17.
由于穿越隧道、燃气管线和地质条件的工程需要,部分地铁隧道是V形坡度隧道。V形坡度隧道的烟囱效应会增加地铁隧道火灾烟气控制的复杂性和困难。该文采用理论分析和数值模拟相结合的方法研究V形隧道夹角和高差对地铁隧道火灾临界风速和烟气返流长度的影响。研究结果表明,坡度隧道的隧道夹角对地铁隧道火灾临界风速有较大影响,隧道火灾临界风速随着上坡隧道夹角增大而变小,隧道火灾临界风速随着下坡隧道夹角增大而变大;V形坡度隧道自然通风竞争效应会对地铁隧道火灾临界风速有较大影响,隧道火灾临界风速随着上坡隧道高差的增大而变小,隧道火灾临界风速随着上坡隧道夹角的增大而变小。该文的研究结果可以为V形坡度隧道通风防排烟系统设计过程中的火灾临界风速取值提供理论参考和依据。  相似文献   

18.
全高安全门地铁车站火灾时烟气流动特性的模型实验   总被引:1,自引:0,他引:1  
搭建了安装全高安全门系统的双层岛式地铁车站1∶8模型实验台,通过比例模型实验,重点研究了轨道区一端发生火灾,烟气在站台轨道区以及站台公共区的流动特性.结果表明,在火灾的增长阶段,如果机械排烟系统不开启,轨道区烟气会通过全高安全门顶端空隙扩散到站台公共区,并阻断距火源较近的楼梯口的疏散通道;当机械排烟系统开启时,烟气向站台公共区的扩散速度得到明显控制,但由于站台轨顶各排烟口排烟特性的不均匀性,远离排烟风机的火源附近,烟气通过全高安全门顶端空隙扩散到了站台公共区.如果能使各排烟口排风量均匀,则将提高控制烟气向站台公共区扩散的效果.  相似文献   

19.
以沈阳地下铁路工程为例.利用计算流体力学的SIMPLE算法,在5种防排烟方式下,对地铁站台煤油火灾烟气的蔓延情况进行数值模拟.选取距地铁站台地面2m平面上,两楼梯口中心点作为测点,得到了不同防排烟情况下测点温度及CO_2摩尔分数的实时曲线,及地铁火场温度和CO_2浓度场云图,分析不同的防排烟方式对地铁站台煤油火灾烟气蔓延情况的影响.模拟结果表明,当仅使用机械排烟时,排烟口位置不同,排烟效果相差不大.加压送风系统与机械排烟同时使用,能有效遏制烟气蔓延,并出现周期性衰减的情况;远离火源的楼梯口可作为更加安全的疏散通道.  相似文献   

20.
针对地下车库诱导通风辅助排烟技术问题,利用数值模拟手段并结合现场实测结果对地下车库不同风机布置形式、风机出口风速火灾工况排烟效果进行研究,分析射流风速、风机的位置对车库内烟气温度分布和能见度的影响。研究结果表明,射流风机的风速大小和布置形式对排烟效果有重要影响,在工况3和工况5中,烟气能够向排烟口快速移动,并大幅度提高火源上游位置的能见度,降低火源附近区域的温度。工况3可作为该地下车库最佳辅助排烟方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号