首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of Ni addition and aging treatments on the microstructure and properties of a Cu–3Ti alloy were investigated. The microstructure and precipitation phases were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy; the hardness, electrical conductivity, and elastic modulus of the resulting alloys were also tested. The results show that Ni addition increases the electrical conductivity and elastic modulus, but decreases the hardness of the aged Cu–3Ti alloy. Within the range of the experimentally investigated parameters, the optimal two-stage aging treatment for the Cu–3Ti–1Ni and Cu–3Ti–5Ni alloy was 300°C for 2 h and 450°C for 7 h. The hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–1Ni alloy were HV 205, 18.2% IACS, and 146 GPa, respectively, whereas the hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–5Ni alloy were HV 187, 31.32% IACS, and 147 GPa, respectively. Microstructural analyses revealed that β′-Ni3 Ti and β′-Cu4 Ti precipitate from the Cu matrix during aging of the Cu–3Ti–5Ni alloy and that some residual Ni Ti phase remains. The increased electrical conductivity is ascribed to the formation of Ni Ti, β′-Ni3 Ti, and β′-Cu4 Ti phases.  相似文献   

2.
Reaction-bonded B_4C–SiC composites are highly promising materials for numerous advanced technological applications. However,their microstructure evolution mechanism remains unclear. Herein, B_4C–SiC composites were fabricated through the Si-melt infiltration process. The influences of the sintering time and the B_4C content on the mechanical properties, microstructure, and phase evolution were investigated. X-ray diffraction results showed the presence of SiC, boron silicon, boron silicon carbide, and boron carbide. Scanning electron microscopy results showed that with the increase in the boron carbide content, the Si content decreased and the unreacted B_4C amount increased when the sintering temperature reached 1650°C and the sintering time reached 1 h. The unreacted B_4C diminished with increasing sintering time and temperature when B_4C content was lower than 35 wt%. Further microstructure analysis showed a transition area between B_4C and Si,with the C content marginally higher than in the Si area. This indicates that after the silicon infiltration, the diffusion mechanism was the primary sintering mechanism of the composites. As the diffusion process progressed, the hardness increased. The maximum values of the Vickers hardness, flexural strength, and fracture toughness of the reaction-bonded B_4C–SiC ceramic composite with 12 wt% B_4C content sintered at 1600°C for 0.5 h were about HV 2400, 330 MPa, and 5.2 MPa·m~(0.5), respectively.  相似文献   

3.
Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying (TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni3Al, Al2O3, and NiO. The Ni–Al phase and a small amount of Al2O3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and NiAl in addition to a small amount of Al2O3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, NiAl, and Ni3Al in addition to a small amount of Al and Al2O3, and NiAl and Ni3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state.  相似文献   

4.
Joining of Ti_2AlNb alloy to TiAl intermetallics was conducted by the newly-developed Ti–Ni–Nb–Zr brazing filler alloy.The microstructure evolution of the joints was investigated by scanning electron microscope (SEM),energy dispersive spectrometer (EDS) and electron backscatter diffraction (EBSD).The macro-micro mechanical properties were studied by shear test and nano-indentation test.Typical interfacial microstructures across the brazing seam were Ti_2AlNb substrate,α_2-Ti_3Al+β-Ti,γ-TiAl+Ti_2Ni+TiNi+α_2-Ti_3Al,α_2-Ti_3Al+β-Ti,TiAl substrate.The Ti_2Ni phase were firstly dissolved in the joints brazed at 1000°C for 10 min and then precipitated after a prolonged holding time of 15 min.The nano-indentation test revealed that Ti_2Ni phase exhibited the highest hardness of 12.60 GPa.The joints brazed at 1000°C/15 min presented the maximum shear strength of271 MPa.The dissolution and precipitation behavior of Ti_2Ni phase was also discussed.  相似文献   

5.
Large-strain deformation by single electroplastic rolling(EPR) was imposed on AZ31 magnesium alloy strips. During EPR at low temperature(150–250°C), numerous twins formed in the alloy. After EPR at a high temperature(350°C), the number of twins reduced and some dynamic recrystallization(DRX) grains formed at grain boundaries and twinned regions. The synergic thermal and athermal effects generated by electropulsing, which promoted dislocation motion, induced a few small DRX grains, and ductile bandings were mainly responsible for large-strain deformation during EPR. The inclination angle of the basal pole stemmed from the counterbalance of the inclination direction of the basal pole between the DRX grains and deformed coarse grains.  相似文献   

6.
A metastable P-type Ti-30Nb-lMo-4Sn alloy with ultralow elastic modulus and high strength was fabricated.Under the solution treatment state,the Ti-30Nb-1Mo-4Sn alloy possesses low yield strength of about 130 MPa owing to the presence of the coarse α " martensitic laths.Upon a cold rolling and annealing process,the martensitic transformation from β to α" is significantly retarded due to the inhibitory effect of grain boundaries and dislocations.As a result,the metastable β phase with low total amount of β-stabilizers is retained to room temperature,giving rise to a low modulus of 45 GPa.Meanwhile,nano-sized a precipitates and dislocation tangles play a key role in strengthening the Ti-30Nb-1Mo-4Sn alloy,resulting in a high tensile strength of ~ 1000 MPa.With low elastic modulus and high strength,the metastable P-type Ti-30Nb-1Mo-4Sn alloy could be a potential candidate for biomedical materials.  相似文献   

7.
Effects of melt temperature and casting speed on microstructure and mechanical properties of Cu-14%Al-3.8%Ni(mass fraction) alloy wires fabricated by continuous unidirectional solidification technology were investigated.It was found that the average size of columnar grain in the alloy decreased and grain boundary turned clear and straight with increasing the casting speed at a given melt temperature.When the melt temperature was up to 1 280℃,theβ_1 phase gradually transformed into lozenged and lanciformγ...  相似文献   

8.
Synthesis and consolidation behavior of Cu–8 at%Cr alloy powders made by mechanical alloying with elemental Cu and Cr powders,and subsequently,compressive and electrical properties of the consolidated alloys were studied.Solid solubility of Cr in Cu during milling,and subsequent phase transformations during sintering and heat treatment of sintered components were analyzed using X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The milled powders were compacted applying three different pressures(200 MPa,400 MPa and 600 MPa)and sintered in H2atmosphere at 900 1C for 30 min and at 1000 1C for 1 h and 2 h.The maximum densification(92.8%)was achieved for the sample compacted at 600 MPa and sintered for 1000 1C for 2 h.Hardness and densification behavior further increased for the compacts sintered at 900 1C for 30 min after rolling and annealing process.TEM investigation of the sintered compacts revealed the bimodal distribution of Cu grains with nano-sized Cr and Cr2O3precipitation along the grain boundary as well as in grain interior.Pinning of grain boundaries by the precipitates stabilized the fine grain structure in bimodal distribution.  相似文献   

9.
The morphology and growth kinetics of discontinuous precipitation (DP) in a Cu–20Ni–20Mn alloy were investigated in the temperature range of 523–673 K by optical microscopy, scanning electron microscopy, and transmission electron microscopy. A lamellar mixed structure consisting of alternating lamellae of a matrix and NiMn phase was observed in DP colonies. The volume fraction of regions formed by a DP reaction was determined by quantitative metallographic measurements. The kinetics of DP was evaluated on the basis of the Johnson–Mehl–Avrami–Kolmogorov equation, which resulted in a time exponent of approximately 1.5. We confirmed that the nucleation of the discontinuous precipitate was confined to grain edges or boundaries at an early stage of the reaction. The activation energy of DP process was determined to be approximately (72.7 ±7.2) kJ/mol based on the Arrhenius equation; this result suggests that DP is controlled by grain boundary diffusion. The hardness values exhibited good correlation with the volume fraction of DP; this correlation was attributed to the presence of the ordered NiMn phase.  相似文献   

10.
The compression behavior of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using insitu high pressure energy dispersive X-ray diffraction with a syn- chrotron radiation source. The equation of state is determined by fitting the experimental data accord- ing to Birch-Murnaghan equation: -ΔV/V0=0.08606P-3.2×10-4P2 5.7×10-6P3. It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5 GPa.  相似文献   

11.
The development of Gen-IV nuclear systems and ultra-supercritical power plants proposes greater demands on structural materials used for key components. An Fe–18Ni–16Cr–4Al (316-base) alumina-forming austenitic steel was developed in our laboratory. Its microstructural evolution and mechanical properties during aging at 950℃ were investigated subsequently. Micro-structural changes were characterized by scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy. Needle-shaped NiAl particles begin to precipitate in austenite after ageing for 10 h, whereas round NiAl particles in ferrite are coarsened during aging. Precipitates of NiAl with different shapes in different matrices result from differences in lattice misfits. The tensile plasticity increases by 32.4% after aging because of the improvement in the percentage of coincidence site lattice grain boundaries, whereas the tensile strength remains relatively high at approximately 790 MPa.  相似文献   

12.
In recent years, the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al–Si alloys. However, the effect of Ni on the wear behaviors of Al–Si alloys and Al matrix composites, particularly at elevated temperatures, remains an understudied area. In this study, Al–Si–Cu–Mg–Ni/20wt% SiC particles(SiCp) composites with varying Ni contents were prepared by using a semisolid stir casting method. The effect of Ni content on the dry sliding wear behavior ...  相似文献   

13.
A biodegradable Zn alloy, Zn–1.6Mg, with the potential medical applications as a promising coating material for steel components was studied in this work. The alloy was prepared by three different procedures: gravity casting, hot extrusion, and a combination of rapid solidification and hot extrusion. The samples prepared were characterized by light microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. Vickers hardness, tensile, and compressive tests were performed to determine the samples’ mechanical properties. Structural examination reveals that the average grain sizes of samples prepared by gravity casting, hot extrusion, and rapid solidification followed by hot extrusion are 35.0, 9.7, and 2.1 μm, respectively. The micrograined sample with the finest grain size exhibits the highest hardness (Hv = 122 MPa), compressive yield strength (382 MPa), tensile yield strength (332 MPa), ultimate tensile strength (370 MPa), and elongation (9%). This sample also demonstrates the lowest work hardening in tension and temporary softening in compression among the prepared samples. The mechanical behavior of the samples is discussed in relation to the structural characteristics, Hall–Petch relationship, and deformation mechanisms in fine-grained hexagonal-close-packed metals.  相似文献   

14.
Although excellent recyclability is one of the advantages of Al alloys, a recycling process can reduce different properties of these alloys by adding coarse AlFeSi particles into the alloys' microstructures. One of the well-known methods for modifying the microstructure of metallic materials is the imposition of severe plastic deformation (SPD). Nevertheless, the microstructure evolutions of recycled Al alloys containing extraordinary fractions of AlFeSi particles during SPD processing have seldom been considered. The aim of the present work is to study the microstructure evolution of a recycled Al-Fe-Si-Cu alloy during SPD processing. For this purpose, tubular specimens of the mentioned alloy were subjected to different numbers of passes of a recently developed SPD process called tube channel pressing (TCP); their microstructures were then studied using different techniques. The results show that coarse AlFeSi particles are fragmented into finer particles after processing by TCP. However, decomposition and dissolution of AlFeSi particles through TCP processing are negligible. In addition, TCP processing results in an increase in hardness of the alloy, which is attributed to the refinement of grains, to an increase of the dislocation density, and to the fragmentation of AlFeSi particles.  相似文献   

15.
The wettability of V-active PdCo-based alloys on Si3N4ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6(wt%),was developed for Si3N4ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4joints brazed at 1453 K for 10 min was 205.6 MPa,and the newly developed braze gives joint strengths of 210.9 MPa,206.6 MPa and 80.2 MPa at high temperatures of 973 K,1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4joint brazed at 1453 K for10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result,the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases,in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.  相似文献   

16.
A novel Ti-Ni-Nb-Zr quaternary filler alloy with the composition of Ti-(19~25)Ni-(15~25)(Nb+Zr)(wt.%) was designed.The filler alloy was composed of(Ti,Nb)ss,(Ti,Zr,Nb)ss+(Ti,Zr)2Ni,α-Ti and Ti2Ni phases.It was fabricated into filler foil with a thickness of about 45 μm by a rapid solidification technique.The results indicate that the liquidus temperature of the Ti-Ni-Nb-Zr brazing alloy was about 978℃,and the brazing alloy presented excellent wettability on TiAl substrate.T...  相似文献   

17.
The microstructural evolution and creep behavior of the Ti-43.5Al–4Nb–1Mo-0.1B alloy have been investigated by scanning electron microscope(SEM) and transmission electron microscope(TEM). The excellent creep property was obtained with a fully lamellar(FL) microstructure containing the least grain boundary βo phase(GB-βo).TEM results revealed that after creep testing the α2→βophase transformation was observed in the FL microstructure. The formation βophase is asso...  相似文献   

18.
The microstructure and texture evolution during continuous cooling hot deformation(CCHD) in a near β titanium alloy, named Ti-7Mo-3Nb-3Cr-3Al(Ti-7333), were investigated by using the electron backscattered diffraction(EBSD). The results indicate that the precipitation of secondary α phase was restricted by CCHD, and the morphology of primary α phase nearly had no change with the deformation and temperature drop. In contrast, βphase underwent more deformation and the grains tended to refine. This may be due to the dynamic recrystallization(DRX) of β phase, including continuous dynamic recrystallization(CDRX) and discontinuous dynamic recrystallization(DDRX). In addition, the textures of {110} 110 , {225} 520 and{115} 123 transformed to {100} 110 and {001} 100 during CCHD. Among these, the η-fiber component of {001} 100 was the dominant deformation texture in the deformed Ti-7333 alloy. Finally,continuous cooling has an important effect on the work hardening and softening during CCHD, contributing to the different flow behaviors at different cooling rates.  相似文献   

19.
This paper presents a systematic study of newly developed metastable β-type Ti-25Nb-2Mo-4Sn (wt%) alloy with high strength and low elastic modulus, with focus on the microstructural evolution and mechanical behavior associated with aging. The pre-treatment (solution treatment or cold rolling) prior to aging exerts substantial influence on the subsequent aging response including microstructural evolution and mechanical behavior. Even under the same aging treatment, the aging products could be (β+ω), or alternatively (β+α), depending on the pre-treatments. This interesting aging response was discussed on the basis of the mechanism for ω formation. High-density dislocation tangles and grain boundaries induced by severe cold rolling play a key role in hindering the transition from β to isothermal ω, favoring the precipitation of α phase on aging. By aging cold-rolled specimen for short time, superior mechanical properties, i.e. high ultimate strength of ~1113 MPa and low elastic modulus of ~65 GPa, achieved in Ti-25Nb-2Mo-4Sn alloy. The characterization of microstructural evolution and compositional change indicated that the precipitation of fine α does not cause the enrichment of β-stabilizers in β matrix upon a short-time aging, guaranteeing low elastic modulus of the short-time aged specimen. Meanwhile, fine α precipitates as well as dislocations play a crucial part in strengthening, giving rise to its high yield strength and high ultimate tensile strength.  相似文献   

20.
The effect of equal channel angular pressing(ECAP) at different temperatures(room temperature, 120,150 and 180 °C) on microstructure and mechanical properties of Al-7075 solid solution alloy was investigated. Microstructure of the specimens was examined using orientation imaging microscopy,transmission electron microscopy as well as X-ray diffractometer, and mechanical properties were measured by Vickers microhardness and tensile tests. Microstructural investigations showed that after3 or 4 passes of ECAP, fi ne grains with average grain sizes in range of 300–1000 nm could be obtained at different ECAP temperatures. Increasing ECAP temperature from 120 to 180 °C caused a decrease in mechanical properties as a result of increasing grains and precipitates sizes, decreasing fraction of high angle boundaries and also transformation of η′ into η phase, while increasing ECAP temperature from RT to 120 °C leads to an increase in mechanical properties due to the formation of small η′ precipitates. So it can be concluded that ECAP process at 120 °C is the optimum process for attaining maximum mechanical properties. Quantitative estimates of various strengthening mechanisms revealed that the improvement of mechanical properties was mainly attributed to grain re fi nement strengthening, precipitation strengthening and dislocation strengthening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号