共查询到20条相似文献,搜索用时 0 毫秒
1.
《北京科技大学学报》2017,(3)
Ti–51at%Ni shape memory alloys(SMAs) were successfully produced via a powder metallurgy and microwave sintering technique.The influence of sintering parameters on porosity reduction,microstructure,phase transformation temperatures,and mechanical properties were investigated by optical microscopy,field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),differential scanning calorimetry(DSC),compression tests,and microhardness tests.Varying the microwave temperature and holding time was found to strongly affect the density of porosity,presence of precipitates,transformation temperatures,and mechanical properties.The lowest density and smallest pore size were observed in the Ti–51at%Ni samples sintered at 900°C for 5 min or at 900°C for 30 min.The predominant martensite phases of β2 and β19′ were observed in the microstructure of Ti–51at%Ni,and their existence varied in accordance with the sintering temperature and the holding time.In the DSC thermograms,multi-transformation peaks were observed during heating,whereas a single peak was observed during cooling;these peaks correspond to the presence of the β2,R,and β19′ phases.The maximum strength and strain among the Ti–51at%Ni SMAs were 1376 MPa and 29%,respectively,for the sample sintered at 900°C for 30 min because of this sample's minimal porosity. 相似文献
2.
《自然科学进展(英文版)》2021,31(5):779-782
The microstructure, martensitic transformation and mechanical/functional properties of Ti–Ta-Hf alloys with various thermo-mechanical treatments were investigated. The results reveal that the hot-rolling could refine the grain size and introduce a certain number of defects, resulting in the disappearance of martensitic transformation. The as-casted and solution treated Ti–Ta-Hf alloys were composed of α'' martensite phase and smaller volume of β phase. In contrast, the grain size of solution treated Ti–Ta-Hf alloy was slightly less than that of as-casted Ti–Ta-Hf alloy. This should be responsible to the higher yield stress and superior strain recovery characteristics for solution treated Ti–Ta-Hf alloy. The yield stress for the dislocation slip and the maximum recoverable strain of solution treated Ti–Ta-Hf alloy were 723 MPa and 5.06%, respectively. 相似文献
3.
《自然科学进展(英文版)》2022,32(3):340-344
The microstructure of the Ti–V–Al shape memory alloy with refined grain and in-situ TiB phase was modified by doping minor Boron (B), which contributes to the superior mechanical performances and strain recovery characteristics. Compared with other quaternary Ti–V–Al-X alloys, the Ti–V–Al–B alloy showed the largest ultimate tensile stress due to the solution strengthening, grain refinement and precipitation strengthening of in-situ TiB phase. Moreover, the Ti–V–Al alloy added 0.1 ?at.%B possessed the maximum yield stress of 701 ?MPa and the largest tensile fracture strain of 27.6% at the temperature of 150 ?°C. Meanwhile, the excellent strain recovery characteristics with fully recoverable strain of 4% could be obtained due to B addition. Besides, B addition suppressed the precipitation of ω phase during thermal cycling and further improved the thermal cycling stability of the Ti–V–Al alloy. 相似文献
4.
5.
An Fe–44Ni nanocrystalline (NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase (γ-(Fe,Ni)) and a body-centered cubic phase (α-(Fe,Ni)) when it is annealed at temperatures less than 400℃. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500℃ and 600℃ do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization. 相似文献
6.
《北京科技大学学报》2021,(9)
The present study focuses on interface microstructure and joint formation. AA6061 aluminum alloy(Al) and commercial pure titanium(Ti) joints were welded by ultrasonic spot welding(USW). The welding energy was 1100–3200 J. The Al–Ti joint appearance and interface microstructure were observed mainly via optical microscopy and field emission scanning electron microscopy. Results indicated that a good joint can be achieved only with proper welding energy of 2150 J. No significant intermetallic compound(IMC) was found under all conditions. The high energy barriers of Al–Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis. The heat input is crucial for the material plastic flow and bonding area, which plays an important role in the joint formation. 相似文献
7.
Interface microstructure and formation mechanism of ultrasonic spot welding for Al–Ti dissimilar metals
下载免费PDF全文

Li Zhou Shan Liu Jie Min Zhi-Wei Qin Wen-Xiong He Xiao-Guo Song Hong-Bo Xu Ji-Cai Feng 《矿物冶金与材料学报》2021,28(9):1506-1514
The present study focuses on interface microstructure and joint formation. AA6061 aluminum alloy (Al) and commercial pure ti-tanium (Ti) joints were welded by ultrasonic spot welding (USW). The welding energy was 1100–3200 J. The Al–Ti joint appearance and in-terface microstructure were observed mainly via optical microscopy and field emission scanning electron microscopy. Results indicated that a good joint can be achieved only with proper welding energy of 2150 J. No significant intermetallic compound (IMC) was found under all con-ditions. The high energy barriers of Al–Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic ana-lysis. The heat input is crucial for the material plastic flow and bonding area, which plays an important role in the joint formation. 相似文献
8.
Aiming at achieving fine and directionally-solidified microstructure of Nb-Si based alloy,Nb,Si and Ti powder particles were utilized as the raw materials,and laser melting deposition(LMD) experiments were conducted with1500 W and 2000 W laser power,respectively.The microstructure characteristic,micro-hardness,and indentation fracture toughness were examined by scanning electron microscope(SEM),X-ray energy dispersive spectrometer(XEDS) and X-ray diffraction(XRD).The results showed that the two ... 相似文献
9.
A high-throughput method was applied to study oxidation behavior of Nb-Si based alloy using composition spread alloy film as combinatorial libraries.An extended range of composition gradients of Nb-Si based alloy film was deposited by(multi)magnetron co-sputtering.The as-deposited film was composed of amorphous phase.Cr2 Nb,Nb5 Si3 and Nbss could be detected after annealing treatment.After oxidation at 1250℃ for 10 min and 20 min,the film composition space was di... 相似文献
10.
The phase co mpositions, microstructure and especi ally phase i nterfaces in the as-cast andheat-treated Nb– Ti–Si based ultrahigh temperature alloys have been investigated. It is shown that β(Nb,X)5Si3 and γ(Nb,X)5Si3 are the primary p hase s in the Nb–22Ti–16Si–5Cr–5Al (S1) (at%) and Nb–20Ti–16Si–6C r–4Al–5Hf–2B–0.06Y (S2) (at% ) alloys, respectively. The Nb solid solution (Nbss) is the primary phase in Nb–22Ti–14Si–5Hf–3Al–1. 5B –0.0 6Y (S3) (at%) alloy . An orientation relationship between Nbss and γ(Nb,X)5Si3 was determine d to be (1-10)Nb//(101-0)γ and [111]Nb//[0001]γ in the as-cast S2 and S3 alloys. Some original β(Nb,X)5Si3 transfor med into α(Nb,X)5Si3 because Al and Cr diffused from the β(Nb,X)5Si3 to Nbss during heattreatment at 1500 °C for 50 h in the S1 alloy. Mean while, Ti diffused from Nbss to β(Nb,X)5Si3, which induced a Ti to generate near the interface between Nbss and Ti-rich β(Nb,X)5Si3. The orientation relationship between the newl y-formed a Ti and previous Nbss was (110 )Nb//(1-10-1) αTi and [001]Nb//(12-3-1)αTi. Among the ( Nb,X)5Si3 phases , the contents o f Cr and Al in β(Nb,X)5Si3 are n earl y the same as those in γ(Nb,X)5Si3 but obviously hi gher than those in the α(Nb,X)5Si3, where as the content of Si in α(Nb,X)5Si3 is nearly the same a s that in γ(Nb,X)5Si3 but higher than that in the β(Nb,X)5Si3 相似文献
11.
《北京科技大学学报》2015,(11)
The effects of Ni addition and aging treatments on the microstructure and properties of a Cu–3Ti alloy were investigated. The microstructure and precipitation phases were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy; the hardness, electrical conductivity, and elastic modulus of the resulting alloys were also tested. The results show that Ni addition increases the electrical conductivity and elastic modulus, but decreases the hardness of the aged Cu–3Ti alloy. Within the range of the experimentally investigated parameters, the optimal two-stage aging treatment for the Cu–3Ti–1Ni and Cu–3Ti–5Ni alloy was 300°C for 2 h and 450°C for 7 h. The hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–1Ni alloy were HV 205, 18.2% IACS, and 146 GPa, respectively, whereas the hardness, electrical conductivity, and elastic modulus of the Cu–3Ti–5Ni alloy were HV 187, 31.32% IACS, and 147 GPa, respectively. Microstructural analyses revealed that β′-Ni3 Ti and β′-Cu4 Ti precipitate from the Cu matrix during aging of the Cu–3Ti–5Ni alloy and that some residual Ni Ti phase remains. The increased electrical conductivity is ascribed to the formation of Ni Ti, β′-Ni3 Ti, and β′-Cu4 Ti phases. 相似文献
12.
The effect of equal channel angular pressing(ECAP) at different temperatures(room temperature, 120,150 and 180 °C) on microstructure and mechanical properties of Al-7075 solid solution alloy was investigated. Microstructure of the specimens was examined using orientation imaging microscopy,transmission electron microscopy as well as X-ray diffractometer, and mechanical properties were measured by Vickers microhardness and tensile tests. Microstructural investigations showed that after3 or 4 passes of ECAP, fi ne grains with average grain sizes in range of 300–1000 nm could be obtained at different ECAP temperatures. Increasing ECAP temperature from 120 to 180 °C caused a decrease in mechanical properties as a result of increasing grains and precipitates sizes, decreasing fraction of high angle boundaries and also transformation of η′ into η phase, while increasing ECAP temperature from RT to 120 °C leads to an increase in mechanical properties due to the formation of small η′ precipitates. So it can be concluded that ECAP process at 120 °C is the optimum process for attaining maximum mechanical properties. Quantitative estimates of various strengthening mechanisms revealed that the improvement of mechanical properties was mainly attributed to grain re fi nement strengthening, precipitation strengthening and dislocation strengthening. 相似文献
13.
Yan M Zhaoxin Du Xiaoming Cui Jun Cheng Guolong Liu Tianhao Gong Huimin Liu Xiaopeng Wang Yuyong Chen 《自然科学进展(英文版)》2018,28(6):711-717
The microstructure and mechanical properties of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe high strength titanium alloy sheets prepared by unidirectional cold rolling and two-step cross cold rolling were investigated. Results showed that the β phase grains were refined significantly by cold rolling followed by solution treatment for a short time.Compared to unidirectional cold rolling, the short time solution treatment after two-step cross rolling could significantly reduce the non-uniformity of the microstructure of the alloy sheets. After aging treatment at 550 ℃,the anisotropy of the mechanical properties still existed in the unidirectional rolled sheets, and the tensile strength was highest along the rolling direction. After solution and aging treatment, the anisotropy of the mechanical properties of the two-step cross rolling process sheet was not obvious than unidirectional cold rolling,and alloy had good strength and plasticity matching. 相似文献
14.
Yan Liu Jinshan Li Bin Tang William Yi Wang Yudong Chu Lei Zhu Weiqing Bi Xiaofei Chen Hongchao Kou 《自然科学进展(英文版)》2023,33(2):193-202
The microstructural evolution and creep behavior of the Ti-43.5Al–4Nb–1Mo-0.1B alloy have been investigated by scanning electron microscope(SEM) and transmission electron microscope(TEM). The excellent creep property was obtained with a fully lamellar(FL) microstructure containing the least grain boundary βo phase(GB-βo).TEM results revealed that after creep testing the α2→βophase transformation was observed in the FL microstructure. The formation βophase is asso... 相似文献
15.
Y.Pazhuhanfar B.Eghbali 《矿物冶金与材料学报》2021,28(6):1080-1089
In the present research, aluminum metal matrix composites were processed by the stir casting technique. The effects of TiB2 rein-forcement particles, severe plastic deformation through accumulative roll bonding (ARB), and aging treatment on the microstructural charac-teristics and mechanical properties were also evaluated. Uniaxial tensile tests and microhardness measurements were conducted, and the micro-structural characteristics were investigated. Notably, the important problems associated with cast samples, including nonuniformity of the rein-forcement particles and high porosity content, were solved through the ARB process. At the initial stage, particle-free zones, as well as particle clusters, were observed on the microstructure of the composite. However, after the ARB process, fracturing phenomena occurred in brittle ceramic particles, followed by breaking down of the fragments into fine particles as the number of rolling cycles increased. Subsequently, com-posites with a uniform distribution of particles were produced. Moreover, the tensile strength and microhardness of the ARB-processed com-posites increased with the increase in the reinforcement mass fraction. However, their ductility exhibited a different trend. With post-deforma-tion aging treatment (T6), the mechanical properties of composites were improved because of the formation of fine Mg2Si precipitates. 相似文献
16.
Zinc–indium–tin oxide (ZITO) films were grown by pulsed-laser deposition. Three different material compositions were investigated: ZITO-30, ZITO-50 and ZITO-70 in which 30%,50% and 70%, respectively, of the indium in the In2O3 structure was replaced by substitution with zinc and tin in equal molar proportions (co-substitution): In22xZnxSnxO3, where x=0.3, 0.5, 0.7. All ZITO films grown at room temperature were amorphous. The first evidence of crystallinity was observed at higher deposition-temperature as the degree of co-substitution was increased. A decrease in mobility and conductivity was also observed as the degree of co-substitution was increased. The highest mobility for ZITO-30 and ZITO-50 was observed at deposition temperatures just prior to crystallization. The effect of deposition temperature on carrier concentration was minor compared to the effect of oxygen partial pressure during deposition. 相似文献
17.
The as-cast and as-extruded Mg–14 wt%Li–x Sr ( x=0.14, 0.19, 0.39 wt%) alloys were,respectively, prepared through a simple alloying process and hot extrusion. The effects of Sr addition on microstructure and aging behavior of the Mg–14 wt%Li–xSr alloys were studied. The results indicated that β(Li) and Mg2Sr were the two primary phases in the microstructures of both as-cast and as-extruded Mg–14 wt%Li–xSr alloys. Interestingly, with the increase of Sr content from 0.14 wt% to 0.39 wt%, the grain sizes of the as-cast and as-extruded Mg–14 wt%Li–xSr alloys markedly decreased from 5000mm and 38mm to 330 mm and 22mm respectively, while no obvious changes of the micro-hardness and microstructure of the as-extruded alloys were observed during the aging treatment. 相似文献
18.
Lizhen Yan Yongan Zhang Xiwu Li Zhihui Li Feng Wang Hongwei Liu Baiqing Xiong 《自然科学进展(英文版)》2014,(2):15-18
In the present work, an Al–0.66Mg–0.85Si–0.2Cu alloy with Zn addition was investigated by electron back scattering diffraction(EBSD), high resolution electron microscopy(HREM), tensile and Erichsen tests. The mechanical properties of the alloy after pre-aging met the standards of sheet forming. After paint baking, the yield strength of the alloy was improved apparently. GP(Ⅱ) zones and η’phases were formed during aging process due to Zn addition. With the precipitation of GP zones, β″ phases, GP(Ⅱ) zones and η’phases, the alloys displayed excellent mechanical properties. 相似文献
19.
Effects of solidification parameters on microstructure and mechanical properties of continuous columnar-grained Cu–Al–Ni alloy 总被引:1,自引:0,他引:1
Effects of melt temperature and casting speed on microstructure and mechanical properties of Cu-14%Al-3.8%Ni(mass fraction) alloy wires fabricated by continuous unidirectional solidification technology were investigated.It was found that the average size of columnar grain in the alloy decreased and grain boundary turned clear and straight with increasing the casting speed at a given melt temperature.When the melt temperature was up to 1 280℃,theβ_1 phase gradually transformed into lozenged and lanciformγ... 相似文献
20.
《北京科技大学学报》2021,(2)
Cu–Nb microcomposite wire was successfully prepared by a groove rolling process. The effects of groove rolling on the diffraction peaks, microstructure, and properties of the Cu–Nb microcomposite were investigated and the microstructure evolutions and strengthening mechanism were discussed. The tensile strength of the Cu–Nb microcomposite wire with a diameter of 2.02 mm was greater than 1 GPa, and its conductivity reached 68% of the International Annealed Copper Standard, demonstrating the Cu–Nb microcomposite wire with high tensile strength and high conductivity after groove rolling. The results show that an appropriate groove rolling method can improve the performance of the Cu–Nb microcomposite wire. 相似文献