共查询到20条相似文献,搜索用时 15 毫秒
1.
命名实体是电子病历中相关医学知识的主要载体,因此,临床命名实体识别(Clinical Named Entity Recognition,CNER)也就成为了临床文本分析处理的基础性任务之一.由于文本结构和语言等方面的特殊性,面向中文电子病历(Electronic Medical Records,EMRs)的临床命名实体识别依然存在着巨大的挑战.本文提出了一种基于多头自注意力神经网络的中文临床命名实体识别方法.该方法使用了一种新颖的融合领域词典的字符级特征表示方法,并在BiLSTM-CRF模型的基础上,结合多头自注意力机制来准确地捕获字符间潜在的依赖权重、语境和语义关联等多方面的特征,从而有效地提升了中文临床命名实体的识别能力.实验结果表明本文方法超过现有的其他方法获得了较优的识别性能. 相似文献
2.
本文提出了一种新的中方自动文摘的方法,基于hownet提取出词语的语义代替传统的词形频率统计,建立语义向量空间模型,并且通过对抽取出的语句进行句子语义相似度的计算提高文摘精确度。 相似文献
3.
针对现有基于字词联合的中文命名实体识别方法会引入冗余词汇干扰、模型网络结构复杂、难以迁移的问题,提出一种基于多头注意力机制字词联合的中文命名实体识别算法.算法采用多头注意力机制融合词汇边界信息,并通过分类融合BIE词集降低冗余词汇干扰.建立了多头注意力字词联合模型,包含字词匹配、多头注意力、融合等模块.与现有中文命名实体识别方法相比,本算法避免了设计复杂的序列模型,方便与现有基于字的中文命名实体识别模型结合.采用召回率、精确率以及F1值作为评价指标,通过消融试验验证模型各个部分的效果.结果表明,本算法在MSRA和Weibo数据集上F1值分别提升0.28、0.69,在Resume数据集上精确率提升0.07. 相似文献
4.
计算预测蛋白质磷酸化位点的方法常用于位点识别的初筛阶段。为了提升位点初筛的准确率,本文提出一个深度学习模型MAPhos。该模型首先运用氨基酸向量与位置向量的和表示每一个氨基酸残基;随后使用双向GRU循环神经网络捕获各氨基酸残基的特征;接着引入多头注意力机制计算各注意力头的子上下文向量,并将它们连接起来构成肽段的上下文向量;最后通过一个全连接神经网络进行非线性变换和结果预测。真实数据集上的实验结果表明,MAPhos模型预测磷酸化位点在AUC值、灵敏度、正确率、精度和F1分数统计度量上胜过基于特征提取的模型和基于卷积神经网络的模型,同时与基于卷积神经网络的模型相比具有更好的可解释性,这证明了MAPhos模型更加适用于磷酸化位点识别任务的初筛阶段。 相似文献
5.
医学文本实体识别过程存在多义性和复杂性等特点,这导致传统的语言处理模型无法有效获取医学文本语义信息,从而影响了医学实体识别效果。本文提出了一种基于全词MASK的医学文本实体识别模型,其能有效处理中文文本。其中,BERT预处理层能够生成表征上下文语义信息的词向量,Bi-LSTM层对输入的词向量进行双向特征信息提取,注意力机制层对输出的特征向量进行权重分配,从而有效获取文本语句中的长距离依赖,最后通过CRF解码以生成实体标签序列。实验结果表明,该模型在中文简历语料库和CCKS2017语料库中表现优异,F1值分别为96.14%和92.68%。 相似文献
6.
评测是自然语言处理技术研究与发展的一个关键部分,同时也是最有争议的一个部分。作为自然语言处理范畴的中文文摘自动评测,较之英文文摘,有着更多的难点问题。在研究当前基于内容比较策略和基于数理统计策略两类自动文摘评测方法的基础上,提出了混合这两种策略的中文文摘自动评测方法,并通过两组不同实验验证了该评测方法的正确性与实用性。 相似文献
7.
8.
针对基于编码-解码的生成式摘要模型不能充分提取语法知识导致摘要出现不符合语法规则的问题,循环神经网络易遗忘历史信息且训练时无法并行计算导致处理长文本时生成的摘要主旨不显著以及编码速度慢的问题,提出了一种融合序列语法知识的卷积-自注意力生成式摘要方法.该方法对文本构建短语结构树,将语法知识序列化并嵌入到编码器中,使编码时能充分利用语法信息;使用卷积-自注意力模型替换循环神经网络进行编码,更好学习文本的全局和局部信息.在CNN/Daily Mail语料上进行实验,结果表明提出的方法优于当前先进方法,生成的摘要更符合语法规则、主旨更显著且模型的编码速度更快. 相似文献
9.
基于语义的自动文摘研究综述 总被引:1,自引:0,他引:1
基于语义的自动文摘方法能解决自动文摘处理中语言复杂性问题,在克服领域局限性的同时从本质上提高文摘的质量.常用语义模型包括统计主题模型和语义知识模型.基于语义的自动文摘是对传统文摘技术基于语义模型的扩充,在自动文摘的预处理、文档转换、文档候选片段提取和文摘生成4个基本过程中使用各种语义分析方法. 相似文献
10.
状态监测与故障诊断是保证机械设备安全稳定运行的必要手段.本文提出一种基于注意力机制双向LSTM网络(ABiLSTM)的深度学习框架用于机械设备智能故障诊断.首先,将传感器采集的设备原始数据进行预处理,并划分为训练样本集与测试样本集;其次,训练多个不同尺度的双向LSTM网络对原始时域信号进行特征提取,得到设备故障多尺度特征;再次,通过引入注意力机制,对不同双向LSTM网络提取特征的权重参数进行优化,筛选保留目标特征,滤除冗杂特征,以实现精准提取有效故障特征;最后,在输出端利用Softmax分类器输出故障分类结果.通过利用发动机气缸振动实验数据和凯斯西储大学滚动轴承实验数据进行故障诊断实验,故障识别准确率均达到99%以上.实验结果表明,ABiLSTM模型可以实现对原始时域信号的多尺度特征提取和故障诊断,通过与深度卷积网络(CNN)、深度去噪自编码器(DAE)和支持向量机(SVM)等方法进行对比,ABiLSTM模型的故障识别性能优于各类常见模型.另外,通过利用凯斯西储大学滚动轴承在不同工况条件下的数据,对ABiLSTM模型进行泛化性能实验,变工况样本的故障识别准确率仍然能够达到95%以上. 相似文献
11.
现有短文本匹配方法更多关注于句子之间的交互方式,而较少考虑短文本自身关键特征的提取,为此本文提出一个融合自注意力机制和双向长短期记忆网络(BiLSTM)的短文本匹配模型。首先利用BiLSTM和自注意力机制进行特征编码,通过残差连接缓解信息丢失问题;然后利用双向注意力网络进行特征交叉,得到考虑了两个短文本之间交互影响的编码形式;最后将自注意力编码与双向注意力编码进行拼接,既能保留句子本身的重要特征,又能得到交互的特征信息。在两个公开数据集Quora和MRPC上进行对比实验,结果表明,该模型能有效改善短文本匹配性能,特别是在Quora数据集上的准确率达到87.59%,明显优于其他6种常见的同类模型。 相似文献
12.
在特定目标情感分析中,现有的循环神经网络模型存在训练时间长且获取目标相关信息困难的问题。针对该问题,利用注意力机制,提出一种带有位置嵌入的多头注意力门控卷积网络(PE-MAGCN)。首先,模型使用多头注意力层获取目标词与上下文词之间的信息,并额外加入文本和目标词的相对位置嵌入信息,然后采用带有门控机制的卷积神经网络提取与目标词有关的情感特征,最后通过Softmax分类器来识别情感极性倾向。使用SemEval 2014数据集与目前主要用于目标情感识别的模型进行实验对比,结果表明本模型的准确率和F1值较高,可以较好地完成特定目标情感分析任务。 相似文献
13.
针对传统简历实体识别存在一词多义和训练时间长的问题,提出了一种新的简历命名实体识别模型。通过RoBERTa预训练模型获取具有上下文关系的字向量,结合BiGRU和多头注意力机制(Multi-head Attention, MHA)层提取全局信息和局部相关性信息,采用CRF层修正解码确定最终标签,同时裁剪RoBERTa预训练模型。实验表明,该模型在中文电子简历数据集取得95.97%的F1值,高于其他主流模型,且相较于未剪枝的模型提升0.43%,减少1/5训练时间。 相似文献
14.
文本情感分析旨在对带有情感色彩的主观性文本进行分析、处理、归纳和推理,是自然语言处理中一项重要任务。针对现有的计算方法不能充分处理复杂度和混淆度较高的文本数据集的问题,提出了一种基于TF-IDF(Term Frequency-Inverse Document Frequency)和多头注意力Transformer模型的文本情感分析模型。在文本预处理阶段,利用TF-IDF算法对影响文本情感倾向较大的词语进行初步筛选,舍去常见的停用词及其他文本所属邻域对文本情感倾向影响较小的专有名词。然后,利用多头注意力Transformer模型编码器进行特征提取,抓取文本内部重要的语义信息,提高模型对语义的分析和泛化能力。该模型在多领域、多类型评论语料库数据集上取得了98.17%的准确率。 相似文献
15.
为对网络舆情数据进行主题挖掘与情感分析,以微博某单位招聘热点事件的舆情演变为研究对象,提出了一种融合主题模型和情感分析的LDA-Attention-BiLSTM模型。运用Python的Scrapy框架爬取该事件文本评论。采用隐含狄利克雷分布(LDA)模型实现了主题识别。使用基于注意力(Attention)机制的双向长短期记忆(BiLSTM)网络进行文本情感分析。研究结果表明,构建的基于LDA与Attention机制BiLSTM的混合模型能够反映舆情中的热点话题与情感时序变化,揭示事件爆发的主要原因,事件传播阶段的主要话题与事件的处理结果等。 相似文献
16.
提出了一种基于条件随机场的中文自动文摘方法.用条件随机场来建立词性标注模型.在文摘句抽取时,引入了关键词抽取技术抽取文摘句.在生成文摘时,采用了基于规则的方法去除文摘中的冗余信息,使最后生成的文摘更具有可读性.实例表明该方法能够适应于许多领域,得到了很好的应用效果. 相似文献
17.
注意力机制能够挖掘与任务密切相关的重要信息并抑制非重要信息,在语义分割的深层特征表示中发挥着越来越重要的作用。本研究基于广泛应用的U-Net模型,提出了一种基于注意力机制的神经网络模型,针对边缘分割模糊的问题,将U-Net的压缩路径和扩展路径中的双卷积替换为卷积核选择模块,该模块允许网络的每一层根据输入信息进行自适应调整接受野的大小;另外,针对人像分割网络存在不同尺度的全局上下文信息被忽略的问题,采用多尺度预测融合的方法来利用不同尺度的全局信息,并采用双注意力模块汇总空间和通道两方面的注意力信息。大量实验表明,本文中方法的性能与U-Net、UNet++和Attention U-Net等网络相当或更好。 相似文献
18.
针对双向长短时记忆网络-条件随机场(bi-directional long short-term memory-conditional random field,BiLSTM-CRF)模型存在准确率低和向量无法表示上下文的问题,提出一种改进的中文命名实体识别模型。利用裁剪的双向编码器表征模型(bidirectional encoder representations from transformers,BERT)得到包含上下文信息的语义向量;输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络及多头自注意力层捕获序列的全局和局部特征;通过条件随机场(conditional random field,CRF)层进行序列解码标注,提取出命名实体。在人民日报和微软亚洲研究院(Microsoft research Asia,MSRA)数据集上的实验结果表明,改进模型在识别效果和速度方面都有一定提高;对BERT模型内在机理的分析表明,BERT模型主要依赖从低层和中层学习到的短语及语法信息完成命名实体识别(named entity recognition,NER)任务。 相似文献
19.
序列标注任务是自然语言处理领域的重要问题,包括命名实体识别、词性标注、意见抽取等具有重要应用价值的子任务。目前,长短期记忆网络-条件随机场模型(LSTM-CRF)作为序列标注任务的主流框架,虽然取得了很好的性能并被广泛使用,但仍存在局部依赖性以及受限于序列化特征学习的缺点。为了同步建模句子中每个词的局部上下文语义与全局语义,并将两部分语义进行有效融合,提出基于注意力机制的特征融合序列标注模型。具体地,本模型利用多头注意力机制建模句子中任意两个词之间的语义关系,得到每个词应关注的全局语义。考虑到LSTM学习的局部上下文信息和注意力机制学习的全局语义具有互补性,进一步设计了三种特征融合方法将两部分语义深度融合以得到更丰富的语义依赖信息。为验证模型的有效性,在四个数据集上进行了大量的实验,实验结果表明本模型达到较优的性能。 相似文献
20.
针对生成对抗网络生成图像存在结构不完整、内容不真实、质量差的问题,提出一种结合语义分割图的注意力机制文本到图像生成模型(SSA-GAN)。首先采用一种简单有效的深度融合模块,以全局句子向量作为输入条件,在生成图像的同时,充分融合文本信息。其次结合语义分割图像,提取其边缘轮廓特征,为模型提供额外的生成和约束条件。然后采用注意力机制为模型提供细粒度词级信息,丰富所生成图像的细节。最后使用多模态相似度计算模型计算细粒度的图像-文本匹配损失,更好地训练生成器。通过CUB-200和Oxford-102 Flowers数据集测试并验证模型,结果表明:所提模型(SSA-GAN)与StackGAN、AttnGAN、DF-GAN以及RAT-GAN等模型最终生成的图像质量相比,IS指标值最高分别提升了13.7%和43.2%,FID指标值最高分别降低了34.7%和74.9%,且具有更好的可视化效果,证明了所提方法的有效性。 相似文献