共查询到20条相似文献,搜索用时 15 毫秒
1.
滚动轴承作为旋转机械设备中的关键部件,影响着设备的可靠性运行。为了智能开展设备维护工作,提高设备的运转效率,提出一种基于互信息(mutual information,MI)的主成分分析(principal component analysis,PCA)(MI-PCA)结合支持向量回归(support vector regression,SVR)的滚动轴承剩余寿命预测方法。首先利用小波包降噪算法剔除原始振动信号中的异常数据点和噪声,并基于降噪数据提取其时域、频域和时频域特征;然后结合特征与剩余寿命的互信息值进行特征筛选,再通过PCA降维算法获得可表征轴承退化状态的敏感特征,用于SVR的输入;最后构建并训练SVR剩余寿命预测模型,并将其应用于滚动轴承全寿命试验数据。试验结果表明与基于MI和基于PCA的SVR回归预测模型(MI-SVR模型、PCA-SVR模型)相比,基于MI-PCA的SVR模型具有更高的预测精度(预测精度可达97%),能够实现滚动轴承剩余寿命的精准预测,为开展及时有效的设备维护工作提供了决策依据。 相似文献
2.
针对民航发动机寿命预测中监测参数较多筛选困难的问题,提出一种基于信息融合与相关向量机的发动机剩余寿命预测方法。首先通过核主元分析方法从发动机多维监测数据中提取退化特征信息;然后利用非线性模型将主元序列融合成反映发动机退化趋势的健康指数序列;最后采用相关向量机以历史失效数据为训练样本建立预测模型,对现有的发动机健康指数序列进行外推预测得到当前样本的寿命预测值。通过NASA Ames研究中心公开的涡轮风扇发动机仿真数据验证了该方法的有效性,其预测性能优于常用的支持向量机模型和过程神经网络模型。 相似文献
3.
为提高滚动轴承剩余寿命预测精度,提出一种基于集合经验模态分解-核主成分分析(EEMD-KPCA)和改进的哈里斯鹰优化-最小二乘支持向量机(IHHO-LSSVM)的滚动轴承剩余寿命预测模型.首先,使用集合经验模态分解方法对原信号进行分解,根据相关系数和峭度值选取合适的本征模态函数进行重构;然后,提取时域、频域、小波包能量谱等指标,并用核主成分分析,选取累计贡献率大于85%的主成分作为轴承退化性能指标;建立最小二乘支持向量机寿命预测模型,针对模型参数,提出一种改进的哈里斯鹰优化算法,并在新算法基础上设计新的能量周期性递减调控机制.采用轴承全寿命实验数据进行验证,结果表明:该方法提取的轴承性能评估指标能够更全面地表征轴承性能退化情况,建立的模型具有良好的预测效果. 相似文献
4.
针对锂电池剩余寿命预测的直接健康因子难以测量以及预测精度不高等问题,提出一种改进灰狼优化最小二乘支持向量机(improved gray wolf optimization least-squares support vector machine, IGWO-LSSVM)的锂电池剩余寿命间接预测方法。该方法从电池放电特性曲线中获取3种表征电池性能退化的间接健康因子,通过引入tent混沌映射、收敛因子非线性递减与莱维飞行策略对灰狼算法加以改进,并结合LS-SVM模型,形成了具有全局优化的改进灰狼优化最小二乘支持向量机的锂电池寿命预测模型。最后利用NASA数据集对文中提出的方法进行了验证,并将实验结果与GWO-LSSVM、PSO-ELM和BP神经网络算法进行了对比分析,试验结果表明文中所提出的改进算法具有更好的预测性能。 相似文献
5.
针对滚动轴承退化数据的复杂性和传统的寿命预测方法不能充分利用数据的相关性从而导致预测精度不高的问题,提出了一种基于融合深度置信神经网络(deep belief neural , DBN)和长短时记忆神经网络(long-short term memory , LSTM)的剩余寿命预测模型。该模型首先采用带通滤波降噪对滚动轴承振动数据进行去噪,然后依据均方根特征和峭度特征在轴承全寿命周期内的趋势图确定模型的预测起始点;其次利用优化后的4层DBN网络完成深度特征提取并用于LSTM的训练与测试。通过轴承全寿命周期试验证明提出模型的可靠性,并且与传统LSTM、BP(back propagation)神经网络和DBN-BP模型的预测结果进行对比,验证了本文模型的有效性。 相似文献
6.
随着公路交通事业的发展,在役桥梁的使用状态越来越引起了人们的广泛重视.准确地预测在役桥梁的剩余使用寿命可为公路管理部门的养护维修方案提供可靠的决策依据,节省了建设资金,保障了桥梁的安全.但到目前为止,该方面的研究进展比较缓慢.提出了引入回归预测这一数学原理对该问题进行研究分析,方法简单适用,并孳用实例加以说明,实现了桥梁结构剩余使用寿命的预测. 相似文献
7.
8.
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,本文以山西省1993-2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数(c,g)进行寻优,构建PCA-FOA-SVR模型;对试验结果进行验证,发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数(coefficient of determination,R2)分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对本文的后续研究提供了一定的帮助。 相似文献
9.
赵世安 《广西右江民族师专学报》2011,(3):56-60
利用主成分分析(PCA)方法优选神经网络集成个体,利用支持向量机回归集成生成输出结论,建立一个PCA支持向量机回归集成股市预测模型。试验表明,该模型能有效提高神经网络集成系统的泛化能力,预测精度高,稳定性好。 相似文献
10.
【目的】通过改进灰狼优化算法对医疗锂电池进行剩余寿命预测,从而保障抢救时机并减少医疗事故的目的。【方法】运用小波核极限学习机(Wavelet kernel extreme learning machine,WKELM)与小生境灰狼算法(Niche grey wolf optimization,NGWO)相融合的算法形成改进灰狼优化算法WKELM-NGWO算法。采用NGWO算法对WKELM参数进行优化处理,并将最大化训练集的分类准确度作为目标函数,得到寻优过程的数学模型。采用差分方式对医疗电子设备锂电池容量的时间序列进行处理,得到多维时间序列特征向量,归一化处理获得特征向量,并将其分为训练集和测试集。计算得出每只灰狼个体的适应度值fi,并对适应度值fi进行排序,适应度值fi排在前三的个体位置分别记为Xα,Xβ,Xδ。选择最优的灰狼个体位置作为WKELM参数对数据进行训练后,对心脏起搏器用锂电池和心脏除颤仪用锂电池两种锂电池测试样本进行剩余寿命预测操作。【结果】在相同的预测起始点下,WKELM-NGWO算法的均方根误差(RMSE)误差低于WKELM和NGWO算法,基于融合算法WKELM-NGWO的医疗电子设备锂电池剩余寿命(Remaining useful life)预测曲线更接近电池的退化曲线。【结论】WKELM-NGWO融合算法增强了对不同数据的适应能力,既克服了小波核极限学习机(WKELM)学习速度慢、结构不稳定的问题,也克服了小生境灰狼算法(NGWO)求解精度低、收敛速度慢从而导致跳不出局部最优解的问题。 相似文献
11.
针对自适应增强回归阈值(adaptive boosting regression threshold, AdaBoost.RT)算法用于判断训练样本好坏的阈值为常数,不能自适应地对每个测试样本动态调整判断标准的问题,提出了一种动态自适应调整阈值的改进AdaBoost.RT算法。通过引入训练结果的均值与标准差构造奇异系数作为判断相对误差的阈值,实现算法训练计算过程中阈值的自适应调整,在提高预测精度的同时,可以减少选择算法参数带来的繁重工作量。采用4组经典测试函数构造不同规模的训练样本数据进行算法检验,实验结果表明,提出的自适应调整阈值算法可以有效利用测试样本之间的差异性,克服了大噪声数据带来的干扰,改进后的集成算法可以改善回归模型的预测效果,提高模型的泛化性能。利用IEEE PHM 2012数据集验证所提方法的有效性,并与极限学习机(extreme learning machine, ELM)和原始AdaBoost.RT算法进行对比分析。结果表明:采用所提方法获得的轴承寿命预测均方根误差降低了5.18%,决定系数提高了3.11%。 相似文献
12.
为提高机械零件剩余寿命估计精度,提出了一种基于支持向量机(support vector machine,SVM)的剩余寿命区间估计模型.简要介绍SVM的线性及非线性理论,分析SVM输入变量与输出变量间的统计关系,将机械零件性能退化指标和剩余寿命分别作为SVM输入变量及输出变量.假设输入变量与残差相互独立且残差分布类型已知,采用极大似然法估计残差的分布参数,在此基础上推导一定置信水平下SVM输出变量置信区间.将均方误差作为SVM预测误差的衡量指标,应用变步长网格搜索法确定SVM参数.通过实例说明所提模型能够准确对机械零件剩余寿命进行区间估计,具有较强的工程应用价值及通用性. 相似文献
13.
产品的剩余寿命预测能够为产品的维修和更换提供重要的决策依据.传统的比例失效模型方法在剩余寿命预测中得到了广泛的应用,然而此方法没有充分利用产品的历史寿命信息,对产品的退化过程也没有很好地描述.针对此问题,提出了一种融合退化过程与失效率建模的产品剩余寿命预测方法.该方法首先利用线性过程对产品的退化过程建模,然后利用比例失效模型融合退化过程对失效率的影响,达到充分利用产品历史信息的目的.此外,与传统比例失效模型方法不同,模型中的比例参数分为两部分,分别将产品退化的初始信息和产品的退化增量联系起来,进一步利用产品的当前退化信息对产品的参数进行Bayes更新,基于此进行剩余寿命预测,从而实现产品历史数据和当前退化数据的有效融合.通过激光发生器的退化数据验证了所提方法的有效性. 相似文献
14.
针对工业汽油成品辛烷值含量难以实时获取的问题,提出一种辛烷值预测模型,对成品汽油辛烷值含量进行精确预测.首先以某一大型石化企业真实采集数据为基础,提出一种基于孤立森林的数据清洗方式,对原始数据中异常值及缺失值进行预测及填充;然后通过主成分分析法选取与辛烷值含量相关系数较高的36个特征变量基于支持向量机训练辛烷值含量预测... 相似文献
15.
基于进化支持向量机的机械状态预测 总被引:1,自引:0,他引:1
为了解决在历史样本数据有限情况下,传统预测方法预测精度低以及支持向量机预测中人为选择参数的盲目性,结合遗传算法和支持向量机的优势,建立了进化支持向量机预测模型。利用该模型对某型电铲发电机组的振动趋势进行预测,研究结果表明,该方法能自动优化参数,提高了预测精度。该方法可应用到其他时间序列预测中,具有较高的应用价值。 相似文献
16.
针对现有实时寿命预测方法没有充分利用同类产品性能退化数据信息的问题,从研究退化轨迹相似性的角度出发,提出一种基于遗传算法(GA)优化小波支持向量回归机(WSVR)的实时退化轨迹建模和寿命预测方法.首先基于GA优化WSVR建立各同类产品的性能退化轨迹模型,然后以特定个体的历史测量时刻向量为基准,计算同类产品的相应退化测量值向量及其与特定个体退化测量值向量的Euclid距离,并根据Euclid距离确定隶属度权值,基于加权思想建立特定个体的退化轨迹模型,最后结合实时测量数据依次更新退化测量值向量、Euclid距离、隶属度权值和退化轨迹模型,实现实时寿命预测.实例分析验证了所提出的方法是有效的. 相似文献
17.
为了提高滚动轴承故障诊断的准确率,提出一种基于主成分分析(principal component analysis,PCA)和支持向量机(support Vector machine,SVM)模型的滚动轴承故障诊断方法.通过比较不同方法计算的标准差和拉依达准则对数据进行误差分析,利用MATLAB软件中的PCA函数对数据... 相似文献
18.
19.
在对大量同类钻井泵的大修间隔时间数据进行概率统计分析的基础上,求得与钻井泵的运行可靠度相关的特征参数,在宏观上提供钻井泵寿命预测的依据.动力端中情况最差的轴承的寿命可代表钻井泵的寿命,所以将状态监测所得的经优选的各域振动信息作为神经网络系统的模糊输入向量,通过径向基神经网络求出轴承的故障隶属度,作为轴承理论寿命计算公式的修正系数,由此解决钻井泵剩余工作寿命的预测问题,进而获得钻井泵剩余工作寿命.实际预测结果证明了预测方法的科学性和合理性. 相似文献
20.
利用主成分分析对影响变量进行特征提取,选择通用性较强的径向基核函数,应用遗传算法对影响支持向量回归模型的2个重要参数惩罚因子C和核函数参数γ进行优化,建立了基于遗传算法优化的支持向量回归模型,并以提取特征作为模型输入应用于后寨地下河流域平山天窗水位预测.预测结果表明,与传统偏最小二乘回归模型相比,优化后的模型具有更高的... 相似文献