首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在计算机机械学习领域,相对于数字和英文字母,手写汉字的自动生成研究是个重点难点问题,且具有重要研究意义。随着深度学习的不断发展,生成对抗网络在图像生成领域取得了很大进展。本文提出了一种基于循环生成对抗网络(Cycle Generative Adversarial Networks, CycleGAN)的无监督手写汉字生成方法。利用标准仿宋字体图像和手写字体图像进行训练,生成的手写汉字图像具有比较高的识别度。  相似文献   

2.
针对基于深度学习的分类器面对对抗样本时缺乏稳定性的问题,基于生成对抗网络(GAN)提出了一种新的模型,用于生成对抗样本。该模型首次实现了直接以恶意网络流为原始样本的对抗样本生成,并首次提出了弱相关位的概念,用于保证恶意网络流对抗样本的可执行性和攻击性。利用该模型生成的对抗样本能够有效地欺骗基于深度学习的网络安全检测器,且通过实验验证了该对抗样本具有实际攻击效果。  相似文献   

3.
4.
基于生成对抗网络(generative adversarial networks, GAN)的数据生成特性,提出一种用于信道特征生成的GAN改进模型,即信道特征生成对抗网络(channel feature generative adversarial networks, CFGAN)。采用完全无监督学习信道特征方式,利用线性编码向量与生成信道之间的互信息关系和变分互信息最大化原理,实现编码向量与信道特征对应;采用实测室内电力线信道数据集训练CFGAN模型,训练完成的CFGAN能够学习到不同信道特征分布。仿真表明,在-80~-10 dB大动态衰减范围内,CFGAN可根据学习到的信道特征生成具有明显区别的4类信道模型,并且生成信道和实测信道的信道特征差异小于2%。  相似文献   

5.
该文提出了一种改进条件生成对抗网络的文本生成图像模型(TxtGAN),使用一对生成器和判别器的单阶段生成方式生成高分辨率图像,避免因训练多个GAN消耗大量计算资源.生成器网络由一系列生成模块(RUPBlock)组成,每个模块中应用条件批量归一化方法,在实现图像生成的同时充分融合了文本信息与图像特征,较好地保留了文本信息...  相似文献   

6.
为解决现有字体模型不完善的笔画连接、不正确的拓扑结构、字形模糊等伪影问题,提出了一种基于改进条件生成对抗网络的汉字字体生成算法.本算法将字体生成任务视为图像转换问题,提出FontToFont和MSAFont两种自动字体生成方法.针对现有汉字字体生成模型存在的问题,提出了基于改进条件生成对抗网络的汉字字体生成算法FontToFont,通过引入U-Net网络结构,可以使生成器保存更详细的信息,并有利于模型性能.建立一种基于多种风格汉字字体的数据集,定性定量验证模型的性能.提出的这种基于改进条件生成对抗网络的汉字字体生成算法,能够从多风格汉字字体中的一部分字体生成高质量的一整套汉字字体.通过设计师的评价及模型消融实验,生成字体的视觉质量和完整度效果良好.  相似文献   

7.
针对循环一致性生成对抗网络(Cycle-GAN)在图像风格转换任务上出现的纹理细节处理得不好、背景颜色保留较差等问题,并且缩小在配对图像数据集和非配对图像数据集上训练结果的差异,提出一种基于注意力机制的循环一致性生成对抗网络,在生成器网络中融入通道注意力机制(SE-Net),利用网络自主学习的方法得到每一个特征通道的重要程度,再分别赋予每个特征通道不一样的权重系数,以此来强调有重要特征的部分、抑制非重要特征的部分,使得不同特征和不同区域能够被生成器网络非均匀的处理。同时引入对比学习(CL),使网络能够学习到图像的更高层次的通用特征。实验结果表明,所提方法在horse2zebra数据集上取得了较好的结果。  相似文献   

8.
9.
提出了一种基于生成对抗网络的细胞形变动态分类方法,以活细胞视频中的细胞形变动态为对象,引入分类器辅助的生成对抗网络结构同步训练生成对抗网络和分类网络,通过生成对抗网络产生的数据提高了原本分类网络分辨细胞形变动态的性能.首先,细胞动态图像被用于将活细胞视频中的时间维度进行压缩,使其从视频域映射到图像域以方便生成对抗网络的构建.其次,基于分类器辅助的生成对抗网络结构,将分类网络的分类信息作为辅助信息来改善生成对抗网络对多类样本的生成,同时生成网络生成的多类样本可以反过来优化分类网络对于细胞动态形变的分类性能.在构建的活细胞视频数据库上,可以验证提出方法能有效地捕获细胞视频中的空时细胞形变动态,并且其分类的性能优于其它主流方法.  相似文献   

10.
当前攻击者广泛采用域名生成算法(DGA)生成大量的随机域名来躲避检测.针对现有的DGA域名检测模型均是在已经公开的数据集上进行训练构建,无法对未知恶意域名进行有效检测的情况,利用真实域名数据训练自编码器,并将自编码器和生成对抗网络相结合,构造了一种新的DGA域名生成模型.实验表明,该模型产生的序列与Alexa域名在长度和字符分布等特征都很接近,而且能够有效降低基于长短期记忆网络的DGA域名分类器的性能.这些生成序列很好地丰富了恶意域名数据集,对其进一步利用,显著提升了现有DGA域名检测器的性能.  相似文献   

11.
为了解决传统虚拟试穿方法存在的手臂遮挡与细节模糊问题,提升重建图像的视觉质量,提出一种基于生成对抗网络的虚拟试穿方法.通过纹理提取模块和残差样式编码模块提取服装细节信息,并结合人体表征输入与人物姿势来重建试穿图像,解决了手臂遮挡问题,实现了对扭曲失误服装的修复还原,且重建图像服装边缘清晰.定性分析表明,改进虚拟试穿方法...  相似文献   

12.
类别文本生成旨在让机器生成人类可理解的文本,并且赋予生成文本特定的类别属性。现有工作主要采用基于生成对抗网络的文本生成框架,往往直接采用卷积神经网络进行文本特征提取,缺乏对文本全局语义的关注;此外,简单地在生成网络中引入注意力无法有效消除解码过程中的噪声。针对上述问题,本文提出一种将文本全局特征与局部特征联合建模的方法,通过将长短时记忆网络提取的全局语义信息与卷积神经网络提取的局部语义信息进行融合,增强生成过程中对文本全局语义信息的关注,并且引入双重注意力,进一步过滤掉序列生成中的无关信息。与基准模型相比,本文提出的方法分别在2个公开的真实数据集(Movie Review和Amazon Review)上取得了至少0.01和0.004的BLEU值的提升,表明了本文方法的有效性。  相似文献   

13.
针对抽油机故障数据不足、样本分布不均衡的问题,提出一种基于自注意力机制的条件深度卷积生成对抗网络(CDCGAN:Conditional Deep Convolutional Generative Adversarial Networks)模型。该模型在CDCGAN的基础上引入自注意力机制,并在损失函数中加入约束生成图像分布的正则项,提高了生成图像的质量和多样性,有效地防止了模式崩溃的发生。采用Alexnet、VGG16等网络对生成的抽油机故障样本进行分类测试,实验结果表明,改进网络的生成数据质量更高,能够有效平衡抽油机故障数据,进一步提升了抽油机故障诊断的准确率。  相似文献   

14.
为了解决在真实网络环境中,异常数据比正常数据更难获得的问题,提出基于生成对抗网络的网络入侵检测系统GAN-NIDS.在训练阶段只使用正常数据,通过卷积操作压缩数据,使网络结构记住正常数据的深度特征.在测试时,正常数据通过生成器生成的数据与原始数据之间的损失(loss),远小于异常数据通过生成器生成的数据与原始数据之间的...  相似文献   

15.
乳腺癌磁共振成像(nuclear magnetic resonance imaging, MRI)数据由于不同医院采集方式不同、设备不同或病人等自身原因,会存在同一病人不同序列缺失的问题。目前主流的图像生成对抗网络Pix2Pix和Cycle-consistency是医学图像生成的两种主要模式,这类方法要求不同MRI序列数据配对出现,难以处理存在缺失的数据,此外,该类方法往往关注整幅图像的生成质量,缺少对疾病诊断更有价值的病灶区域的生成质量的监控。针对以上问题,该文受配准网络(RegGAN)自适应对准图像空间分布的启发,设计了一种新的基于特征增强的双注意力配准生成对抗网络DA-RegGAN。该网络在生成器中引入卷积注意力模块,使网络更注重病灶的学习;在判别器中添加梯度正则化约束,主要解决网络训练不稳定容易出现模式崩溃的现象,使网络生成包含更清晰的病灶细节全局图。该文在1 697幅乳腺数据上开展消融实验、不同图像生成算法间的对比实验、肿瘤分类实验,进一步验证了方法的有效性。与原始RegGAN比,全局图像生成质量和局部病灶图像生成质量均得到提升,局部图像质量较原始PSNR提升了0.518,S...  相似文献   

16.
超分辨率生成对抗网络(SRGAN)的高分辨率图像质量较传统方法有明显提升,然而其存在训练过程不稳定、图像浅层特征未充分使用等问题,很大程度上影响生成图像的质量.为此,提出一种特征增强改进的SRGAN模型,使用信息蒸馏块.通过对长短途特征在图像通道上的拼接增强特征纹理信息,利用压缩单元消除图像特征中的冗余信息.此外,使用相对平均鉴别器替代原始SRGAN中的二分类鉴别器,保证生成对抗网络训练的稳定性.本研究基于4倍放大因子进行超分辨重建任务,并在BSD100和SET14数据集上进行实验结果的质化和量化评价.实验表明,该方法较之SRGAN在训练过程中具有更好的稳定性,生成的图像具有更清晰的细节纹理,取得了更佳的图像超分辨率重建效果.  相似文献   

17.
提出了一种新的基于生成对抗网络的人脸图像彩色化方法.所提出的网络结构包含两组生成对抗子网络,每个子网络由一个生成器和判别器组成.其中,一个对抗子网络A(包含生成器A和判别器A)实现从灰度图像到彩色图像的翻译过程,另一个子网络B(包含生成器B和判别器B)反转该过程,即生成器B对称地使用生成器A的最终输出图像作为输入,用来重建原始的人脸灰度图像.其中,网络中的循环损失进行图像重建,而生成损失和对抗损失用来保证生成的图像更加接近真实图像.实验结果表明,这种结构设计不仅能实现自然逼真的人脸图像彩色化,还能同时保证人脸的身份属性不变.   相似文献   

18.
针对气缸套缺陷检测中缺陷样本不足限制气缸套缺陷检测性能提升问题,采用基于生成对抗网络的气缸套表面缺陷检测算法.首先,为了保持缺陷图像中原有缺陷位置与特征不变,通过循环生成对抗网络模型学习有缺陷气缸套图像与正常图像的关系;其次,利用学习得到的模型对有缺陷气缸套图像进行风格迁移,即把有缺陷气缸套图像背景替换成无缺陷气缸套图像背景,实现对气缸套缺陷数据集的扩充与增强;最后,通过基于数据增强的RetinaNet网络模型对生成图像的有效性进行验证.试验结果表明,通过生成对抗网络生成的气缸套数据集可以提升缺陷检测性能,进一步证明了生成对抗网络在工业应用的可行性.  相似文献   

19.
合成孔径雷达(synthetic aperture radar,SAR)图像是一种能够全天时、全天候产生高分辨率图像的主动式对地观测系统,在农业和军事等方面得到了广泛应用.然而,由于相干成像机制受到相干斑噪声的影响,因此提出了一种基于生成式对抗网络的SAR图像盲去噪算法,构造了基于残差结构的深度卷积神经网络(deep convolutional neural network,DCNN)作为生成网络,可以加速训练过程,提高去噪性能.本文还利用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似指数(structural similarity index measure,SSIM)定义一种新的损失函数,使得去噪后的图像更符合人眼的视觉感知要求.实验结果表明,本文算法可以有效地抑制SAR图像中的相干噪声,获得良好的去噪效果.  相似文献   

20.
风机齿轮箱是风力涡轮传动系统中的关键部分,其故障发生随机、故障样本数量不足,严重影响故障诊断的准确性。针对此问题,提出一种基于循环卷积生成对抗网络的风机齿轮箱故障诊断方法。首先,构建基于循环卷积生成对抗网络的样本生成模型,利用卷积网络和循环网络作为生成器增强样本间的时间相关性;借助Wasserstein距离与梯度惩罚项改进目标函数,并通过博弈对抗机制优化生成器和判别器,提高模型的泛化能力。然后,结合真实样本和生成样本,设计基于堆叠去噪自编码器的故障诊断方法,实现齿轮箱的故障诊断。最后,利用风力涡轮传动系统数据集验证所提出的风机齿轮箱故障诊断方法的性能。结果显示,所提方法能够有效平衡故障样本数据集,进一步提高风机齿轮箱故障诊断的准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号