共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
求解非线性约束优化问题改进的粒子群算法 总被引:1,自引:0,他引:1
采用粒子群算法处理约束优化问题时,由于约束条件使得解空间成为非凸集合,粒子容易陷入局部最优,因此在搜索过程的不同阶段,提出变步长因子的粒子群算法,实验证明改进的算法在精度与稳定性上明显优于采用罚函数的粒子群算法和遗传算法等其他一些算法。 相似文献
3.
针对非线性函数优化问题,提出一种新型的模糊粒子群算法.该算法基于模糊控制器中输入输出的模糊化处理和粒子群寻优的特点.算法在Matlab 2008环境下编程实现,针对几个典型复杂的非线性函数进行优化测试.实现结果表明:模糊粒子群算法是一种简单有效的算法,具有良好的有效性和鲁棒性. 相似文献
4.
针对动态粒子群优化算法的群体多样性问题,提出一种新的度量方法.为了提高群体多样性,在每次迭代前,子群内部各粒子以一定的概率飞离局部最优粒子,以保持子群内部粒子多样性.在此基础上,提出一种动态粒子群优化算法,即在每次迭代前,要淘汰超规模子群中的低适应值粒子,进一步增强整个群体的多样性水平,提高算法的鲁棒性.用标准测试函数MPB测试该算法跟踪动态全局最优值的能力,实验结果表明:该算法能有效跟踪5维以上的动态全局最优值,子群内部多样性水平提高60%以上. 相似文献
5.
基于人工免疫粒子群优化算法的动态聚类分析 总被引:1,自引:0,他引:1
模糊C-均值聚类算法受初始化影响较大,在迭代时容易陷入局部极小值。将粒子群优化算法与模糊G-均值聚类算法相结合,提出一种新颖的动态聚类算法。该算法利用人工免疫思想改进粒子群优化过程,在很大程度上避免了粒子群算法和聚类算法早熟现象的发生,全局搜索能力和局部搜索能力优于同类算法。利用聚类理论中的经验规则kmax≤√n确定聚类数k的搜索范围,在最优粒子基础上进化新一级种群,该方案可有效提高算法的收敛速度。两组数据的仿真实验表明,新算法优于传统模糊C-均值聚类算法,具有收敛速度快和解的精度高的特点。 相似文献
6.
提出了基于惩罚约束问题的群体智能聚类算法PCSI,不必穷尽搜索样本集,利用粒子群算法的优化搜索机制在数据集中有指导地随机搜索聚类中心向量,能够以较小的计算代价确定样本集的类别数.有约束优化过程的罚函数为两部分之和:①目标函数,各样本与其类别中心的均方误差;②自适应惩罚项,即数据集的边界作为粒子群移动的约束条件,对约束违反程度进行惩罚.为降低不平衡数据集的影响,按照数据集的方差和模糊高斯函数,将样本到其类别中心的距离进行模糊映射,归一化到[0,1]区间.粒子群优化方法免去了传统方法的求导计算.聚类IRIS数据集和Reuters-21578文档集以验证算法的有效性,对大规模数据聚类有明显优势. 相似文献
7.
三群协同粒子群优化算法 总被引:6,自引:0,他引:6
针对基本粒子群优化算法易陷入局部极值点、搜索精度低等缺点,提出了一种三群协同粒子群优化算法(TSC-PSO)。搜索时,如果全局极值连续若干代没有改善,粒子未找到全局最优点,就任选某个优群,将其群内粒子和差群粒子交换。仿真结果显示,对一些经典多峰值函数、非凸病态函数,TSC-PSO增强了全局搜索能力,具有比基本PSO更好的优化性能。 相似文献
8.
刘华 《湖南工程学院学报(自然科学版)》2022,(3):56-60+68
为了减缓我国经济社会快速发展给环境造成的负面影响,采用“双碳”战略方式和多能协同优化方法可减少碳排放对环境的污染.本文基于用户测试数据驱动,采用自适应改进粒子群优化算法,尽可能提高可再生能源利用率,实现多能管理系统与楼宇用电用户的相互协同,实现能源供给与消耗的协同优化,以促进清洁能源的开发与利用.最终通过仿真验证该方法的可行性,实验结果达到了预期目标. 相似文献
9.
在分析人工鱼群算法(AFSA)、粒子群算法(PSO)存在不足的基础上,提出一种将PSO群与AFSA群作为两个独立进化的群,同时进行搜索的算法.该算法利用协同思想与正反馈机制,让AFSA群跟踪PSO群的全局最优解,PSO群跟踪AFSA群的全局最优解的算法.这样,一方面利用AFSA的快速找到全局极值邻域的能力克服PSO易陷入局部的不足;另一方面利用PSO的快速收敛能力来提高AFSA的收敛速度和求解精度.基于典型的函数和实例测试的结果都说明了该算法具有收敛速度较快、精度较高的特点. 相似文献
10.
分析了Kennedy最新提出的高斯动态粒子群优化算法(GDPSO)的寻优模式,针对GDPSO的特点,结合粒子群优化算法的新寻优模式,提出了Logistic动态粒子群优化算法(LDPSO);并基于LDPSO和GDP—SO的特性,设计了LDPSO算法的两种改进策略——混合优化策略和最优粒子变异策略,混合优化策略用以提高收敛速度,最优粒子变异策略用以保持群体多样性,避免算法陷入局部最优。实验结果显示了LDPSO及其改进算法的有效性。 相似文献
11.
提出一种基于改进粒子群优化(PSO)算法的优化混合核支持向量机(SVM)算法(ILPSO), 解决了一般混合核SVM算法很难评定参数选择的问题. 该算法通过限定粒子的速度、 搜索空间和交叉算子等多种寻优策略加强其收敛特性, 得到了参数的最佳组合. 仿真实验表明, 该算法能更快速、 有效地获得参数的最优值. 相似文献
12.
Dynamic multi-objective optimization is a complex and dimcult research topic of process systems engineering. In this paper. a modified multi-objective bare-bones particle swarm optimization ( MOBBPSO) algorithm is proposed tbat takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence. Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover. a circular crowded sorting approach is adopted to improve the uniformity of the population distribution. Finally. by combining the algorithm with control vector parameterization. an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 相似文献
13.
拱坝已成为大型水利枢纽的主要坝型之一,大坝变形预测是大坝安全监控的重要内容,预测分析的难点之一在于变形监测数据往往具有复杂的非线性特点.支持向量机(SVM)具有良好的泛化能力,可有效地解决小样本、非线性、高维数等问题,因此可将其广泛应用于拱坝变形观测中.由于算法的成功与否很大程度上取决于其参数的选取,本文充分利用粒子群算法快速全局优化的特点,采用粒子群算法来优化支持向量机的模型参数,建立了基于PSO—SVM的大坝变形预测模型.将该模型应用于某拱坝坝基变形预测中,与传统的多元回归模型预测结果进行对比.结果表明,PSO—SVM模型用于拱坝变形预测是可行的. 相似文献
14.
基于粒子群统计规律的PSO算法 总被引:4,自引:0,他引:4
粒子群优化(particle swarm optimization,PSO)算法是一类基于群体智能的全局优化算法,以其计算迅速和易于实现而得到广泛的应用.但作为一种进化算法,它在很多问题中却容易过早收敛,陷入早熟.这与粒子群采用单一的进化策略有关,因为过于单一的进化策略使粒子群整体上有一种趋同性.针对标准PSO算法的这个问题提出了一种改进方法,改进后的PSO-σ算法实质上是Kennedy讨论过的认知模型、社会模型和完全模型的混合算法.从算法的收敛性、准确性和稳定性等方面对这种改进的算法作了试验和分析,发现均优于标准PSO算法. 相似文献
15.
为了实现鲸鱼优化算法的种群多样性、减小计算复杂度,构造具有搜索上下界的初始种群。进一步,设计动态收敛因子和动态权重因子,以提高算法的收敛速度和计算精度,在此基础上,提出基于改进动态因子的鲸鱼优化算法并证明了其收敛性,分析了其复杂度。为了验证新算法优化性能和普适性,将改进的鲸鱼优化算法与其他优化算法进行比较,并将其应用到无人机路径规划中。结果表明:基于改进动态因子的鲸鱼优化算法相比于其他优化算法有更好的收敛精度和更快的收敛速度。可见,基于改进动态因子的鲸鱼优化算法性能更好,能更高效的完成任务。 相似文献
16.
随着全球信息化的出现,手工分类索引已经不适用于大规模信息的处理,自动分类的研究得到迅速发展。K-近邻法是具有一定效率的自动分类算法。本文将其与智能优化技术结合,用于基于机器学习的文本分类过程中。实验结果表明,对于庞大的文档集合分类,该算法提高了分类的速度和精度。 相似文献
17.
黄飞 《湖南文理学院学报(自然科学版)》2012,(4):21-25
碳排放量预测对于发展低碳经济十分重要,利用GM(1,1)灰色模型对碳排放预测存在一些不足.本文引入动态自适应粒子群算法对其进行改进,并结合新模型(DAPSOGM)来预测碳排放,以浙江丽水市近5年的碳排放量,编辑matlab程序实证分析,结果证实新模型具有较高的预测精度和推广价值. 相似文献
18.
为解决基于多核计算环境下的粒子群优化问题,提出一种面向多核计算的改进粒子群算法.通过引入多核设计模式和方法,分析传统粒子群算法中可以并行执行的部分,并根据已有的多核编程语言,在多核计算环境下,高效、并行地实现粒子群算法.通过实验验证了改进算法在多核计算环境下运行的有效性. 相似文献
19.
黄少荣 《重庆师范学院学报》2013,(6):123-127
粒子群优化算法本质上是一种全局随机优化技术,优化性能高但容易陷于局部最优,并且算法性能很大程度上依赖于参数设置。本文对该算法的3个控制参数进行数据实验和调查,分析参数设置对算法性能的影响规律,提出一种改进的粒子群优化算法,该算法在迭代的每一代中,惯性权重和加速系数都是在一定范围内随机产生:ω=rand(0.4,0.7),C1=rand(0.5,3.0),C2=rand(1,3.5)。由于该算法的控制参数不再固定取值;而且在一定范围内随机产生,从而增强了算法的多样性和遍历性,能够有效避免算法早熟收敛。通过标准函数的测试,验证了该算法性能优于固定参数粒子群算法和随机加速系数粒子群算法,具有更好的收敛性和稳定性。 相似文献