共查询到17条相似文献,搜索用时 93 毫秒
1.
针对现有入侵检测技术的不足,对基于机器学习的异常入侵检测系统进行了研究,提出了一种基于半监督聚类的异常入侵检测算法。此算法通过利用少量的标记样本,生成用于初始化算法的种子聚类,然后辅助聚类过程,对数据进行检测。实验表明,与以往入侵检测算法相比,此算法可以明显地改善入侵检测系统的性能。 相似文献
2.
利用少量的标记数据和约束辅助聚类过程,提出一种基于半监督聚类的入侵检测模型.实验结果表明,与基于监督和非监督学习的入侵检测算法相比,基于半监督聚类的入侵检测算法可以更加有效地检测出未知攻击. 相似文献
3.
朱韶平 《吉首大学学报(自然科学版)》2014,35(5):33-36
针对网络安全入侵行为升级快、隐蔽性强和随机性高等严重的安全问题,提出了一种基于半监督的网络安全入侵检测算法.该算法利用Boosting建立入侵检测模糊分类器,采用遗传算法进行迭代训练,生成最终的网络安全入侵检测模型.仿真结果表明,该算法有效提高了网络安全入侵检测的性能和效率.与SVM等先进的入侵检测方法相比,该算法能更加准确有效地检测各种类型的入侵,具有良好的检测效果和应用价值. 相似文献
4.
针对当前网络入侵具有多样性和易变性, 单一方法很难获得理想网络入侵检测结果的问题, 为提高网络入侵检测正确率, 有效拦截各种网络入侵, 提出一种将半监督技术与主动学习相结合的网络入侵检测方法. 首先, 采集网络入侵数据, 提取网络入侵特征, 并采用半监督技术根据特征对网络入侵数据进行聚类处理; 其次, 采用主动学习算法对聚类后的数据进行训练, 构建网络入侵检测的分类器, 并引入蚁群算法对构建网络入侵检测的分类器进行优化; 最后, 采用标准数据集对网络入侵检测方法进行仿真测试. 测试结果表明, 该方法解决了当前入侵检测方法存在的缺陷, 提升了网络入侵检测正确率, 漏检率和误检率明显少于经典网络入侵检测方法, 同时缩短了网络入侵检测时间, 改善了网络入侵检测效率, 能更好地保证网络通信和数据传输安全. 相似文献
5.
在误用检测和异常检测中都用到了人工智能技术。文章介绍了目前应用于入侵检测系统中的主要的人工智能技术,即聚类,专家系统,人工神经网络、数据挖掘技术、人工免疫技术,自治Agent等技术,可以相信入侵检测和人工智能的紧密结合必会极大地提高现有入侵检测系统的性能,同时促进更多人工智能算法的提出并应用于入侵检测中。 相似文献
6.
详细地分析了WinPcap的结构,WinPcap提供给用户的函数,根据网络协议和端口对数据包进行过滤,将模糊聚类引入到入侵检测系统中来,用KDD99测试数据进行实验,能有效检测出入侵数据. 相似文献
7.
半监督学习是近年来机器学习领域中的一个重要研究方向,其监督信息的质量对半监督聚类的结果影响很大,主动学习高质量的监督信息很有必要.提出一种纠错式主动学习成对约束的方法,算法通过寻找聚类算法本身不能发现的成对约束监督信息,将其引入谱聚类算法,利用该监督信息来调整谱聚类中点与点之间的距离矩阵.采用双向寻找的方法,将点与点间距离进行排序,使得学习器即使在接收到没有标记的数据时也能进行主动学习,实现了在较少的约束下可得到较好的聚类结果.同时,该算法降低了计算复杂度,并解决了聚类过程中成对约束的奇异问题.通过在UCI基准数据集以及人工数据集的实验表明,算法的性能好于相关对比算法,并优于采用随机选取监督信息的谱聚类性能. 相似文献
8.
郭瑜 《东南大学学报(自然科学版)》2013,(Z1):59-62
在循环迭代模糊聚类模型基础上导入半监督项,用已知数据的聚类成果对预报聚类过程进行训练,建立半监督循环迭代模糊聚类模型,确定待预报对象的级别特征值.根据监督权重及迭代模型,得到相对隶属度矩阵,从而得到预报对象的水文要素.最后以新疆伊犁雅马渡站的实测水文资料示例说明该模型在中长期水文预报中的应用效果.计算结果表明,该模型适用于一般的多因子输入、单指标输出的预报控制系统,为复杂系统的预报和控制等领域的应用提供了一条值得探索的新途径. 相似文献
9.
本文提出一种纠错式主动学习成对约束的方法,探讨了主动学习的停止条件,在较少的约束下可得到较好的聚类结果.通过在UCI基准数据集以及人工数据集的实验表明,在该学习策略下,半监督聚类算法的性能好于对比算法;在停止条件下,每个数据集的聚类结果都是可接受的. 相似文献
10.
数据挖掘可以从海量数据中发现模型和数据间的关系并做出预测。针对入侵检测系统的特点,将数据挖掘算法应用于入侵检测系统中,并着重研究了聚类算法中的K均值算法和一种改进的K均值算法。 相似文献
11.
研究了半监督学习的一致性学习算法及其变形.通过引入圆盘定理,证明了一致性学习算法收敛的条件;针对变形学习算法,给出了使用变形矩阵的合理性解释;最后将一致性学习算法及其变形应用于人脸识别问题,对该算法中的参数以及变形矩阵进行了实验研究,并与支持向量机方法进行了性能比较. 相似文献
12.
在对现有入侵检测研究的相关工作进行了总结的基础上,构建了一个基于Multi-agent的分布式入侵检测模型(distributedintrusiondetectionmodelbasedonmulti-agent,DIDMMA).该模型使用Agent技术,中间件技术搭建系统平台,并提供了基于主机和基于网络的入侵检测组件接口,能够确保系统中不同种类的Agent之间的协作顺利完成. 相似文献
13.
Markov model is usually selected as the base model of user action in the intrusion detection system (IDS). However, the performance of the IDS depends on the status space of Markov model and it will degrade as the space dimension grows. Here, Markov Graph Model (MGM) is proposed to handle this issue. Specification of the model is described, and several methods for probability computation with MGM are also presented. Based on MGM, algorithms for building user model and predicting user action are presented. And the performance of these algorithms such as computing complexity, prediction accuracy, and storage requirement of MGM are analyzed. 相似文献
14.
15.
入侵检测需要分析大量的高维样本数据.如何降低高维样本数据的特征维数,对于降低入侵检测系统的训练时间,提高检测精度和检测实时性具有十分重要的意义.提出基于特征相关性分析和基于特征属性重要性评价两种特征选择方法,并利用支持向量机作为分类器来评价不同特征约简方法的有效性和处理实时性.实验结果表明,同经典的主成分分析方法相比,两种特征约简算法都具有较好的处理实时性和较高的分类精度,其中基于属性重要度约简算法在数据预处理时间、训练时间和分类精度上同主成分分析方法相当,且略优于相关性尺度方法. 相似文献
16.
提出了一种改进的人工免疫系统算法——逐级反向选择算法,与Forrest提出的反向选择算法比较,在探测子的生成效率上有了本质性的提高.该算法将反向选择过程和克隆选择过程有机地结合在一起.将逐级反向选择算法用于具体的入侵检测,检测效果有明显的提高。 相似文献
17.
周慧华 《湖北民族学院学报(自然科学版)》2004,22(1):80-83
基于网络的入侵检测系统(Network-based Intrusion Detection System,NIDS)是网络安全系统的一个重要组成部分,对NIDS的基本体系结构、典型入侵检测技术进行了论述;分析了NIDS系统作为一个软件本身应具备的基本安全性能,并提出了对这些安全性能进行检测的方法。 相似文献