首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 515 毫秒
1.
霍林河褐煤吸附铬离子的实验研究   总被引:1,自引:0,他引:1  
为寻找一种廉价高效的处理含铬废水的吸附剂,用Freundlich等温式研究了霍林河褐煤吸附铬离子的等温吸附过程。根据Clapeyron—Clausius方程获得了较小的吸附热,△H仅为-5.83kJ/mol,表明褐煤吸附铬离子是物理吸附过程。同时研究了酸度、溶液浓度及、吸附时间对褐煤吸附铬离子的影响。结果表明:随着pH值增加,平衡吸附量减小;当pH为2、铬离子的质量浓度为50mg/L、吸附100min时,吸附量可达3.8mg/g。用褐煤进行含铬废水的处理具有一定的实际意义。  相似文献   

2.
为进一步揭示煤层瓦斯吸附特性,选择典型矿井煤样进行不同温度(40,50,60,70,80℃)下煤样瓦斯等温吸附实验,采用准一级、准二级、颗粒内扩散以及Elovich等吸附动力学模型分析瓦斯等温吸附规律及机理,进而探讨温度对煤吸附瓦斯动力学特性的影响。研究表明:温度升高,瓦斯吸附量、吸附饱和平衡时间减小;相同温度条件下,吸附速率与时间呈负相关关系;4种吸附动力学模型中,准一级动力学模型拟合效果最好,准二级动力学模型次之,颗粒内扩散模型最差,准一级动力学模型得到的平衡时吸附量与实验结果最为吻合;温度与准一级吸附速率常数k1,准二级吸附速率常数k2,Elovich吸附速率常数β呈正线性相关,与颗粒内扩散速率常数kp,准一级及准二级动力学平衡吸附量Qe1,Qe2均呈负幂函数关系,与Elovich吸附常数α呈负线性关系。温度影响煤体吸附瓦斯分子体系的反应速率,相同条件下,温度升高,瓦斯分子脱附速率增大,煤体瓦斯吸附量减小。  相似文献   

3.
为了解决处理含铬等重金属废水时成本高和效率低等问题,采用吸附法去除Cr(Ⅵ),筛选廉价且吸附性能较好的吸附剂成为研究中的热点问题.而纤维素类农作物废弃物是廉价吸附剂的重要来源,文中选用花生壳为吸附剂原料,采用盐酸对其表面进行酸化改性.考察了pH值、温度、Cr(Ⅵ)初始浓度、改性花生壳投加量和吸附时间对铬离子吸附效果的影响.结果表明,最佳吸附条件为pH=l,温度为50℃,铬离子浓度为50 mg/L,吸附剂投加量为10 g/L,吸附时间为140 min.通过考察反应动力学过程,发现改性花生壳吸附符合准二级反应动力学方程,Freundlich等温吸附模型也能较好地描述改性花生壳对铬离子溶液的等温吸附过程.经过分析研究和实验验证,改性花生壳对吸附废水中的Cr(Ⅵ)是可行有效的.  相似文献   

4.
通过实验室模拟的方法研究了老哈河、霍林河和乌梁素海(入湖口和湖中)的沉积物对NH~+_4-N的吸附特征.结果显示:(1)沉积物吸附氨氮的过程可以用Lagergren准二级吸附动力学方程描述,拟合得出平衡时最大吸附量为23.64 mg/kg;(2) Langmuir等温方程拟合的吸附等温线表明沉积物吸附NH~+_4-N的最大吸附容量范围是1428.75~3333.33 mg/kg,属于单分子层吸附.吸水过程及表面形貌可能对NH~+_4-N的吸附能力有影响.Freundlich吸附等温模型拟合得出常数0.8206(1/n)1.1100,说明沉积物对NH~+_4-N的吸附过程均易于进行;(3)采样点的吸附解吸平衡浓度均大于水体中的NH~+_4-N浓度,为"氮源",且对氨氮的吸附均属于不可逆反应.  相似文献   

5.
选用微波场诱导改性磷石膏作为吸附剂,采用批式振荡吸附法研究改性磷石膏对重金属离子Cu2+,Zn2+,pb2+和Cd2+的吸附动力学及吸附热力学特性,提出吸附机理.研究结果表明:微波场改性磷石膏对Cu2+,Zn2+,pb2+和Cd2+的吸附平衡数据符合Langmuir和Freundlich吸附等温方程,但Freundlich方程能够更好地描述吸附等温线.在改性磷石膏对重金属离子吸附的初始阶段,Lagergren伪一级动力学方程、Lagergren伪二级动力学方程、Elovich方程、粒子内扩散模型均能很好地反映吸附模式,而整个吸附过程则遵循Lagergren伪二级动力学方程,其吸附过程是液膜扩散和粒子内扩散共同作用的结果;Cu2+,Zn2+,pb2+和Cd2+的平衡吸附量分别为3.937 0,3.993 6,2.627 4和3.319 0 mg/g;微波场改性后的磷石膏对Cu2+,Zn2-和Cd2+的吸附是吸热反应,对pb2+的吸附为放热反应.  相似文献   

6.
为描述不同烟气水蒸气体积分数时ZL50活性炭吸附SO2的烟气脱硫动态吸附过程,采用表观吸附动力学模型,对SO2的动态吸附过程加以描述、分析和比较。结果表明,在所研究的条件范围内,模拟效果从优到次为:Bangham模型、Elovich模型、准二级动力学模型、Lagergren准一级动力学模型、粒内扩散模型。颗粒外气膜扩散不是速控步骤,颗粒孔扩散不是吸附的唯一速控步骤;水蒸气体积分数为0时,粒内微孔扩散近似为速控步骤;而水蒸气体积分数为0.04~0.20时,吸附速率为表面反应或表面反应与微孔扩散联合控制。  相似文献   

7.
利用准一级动力学模型、准二级动力学模型、Elovich模型和双常数模型对硅藻土吸附腐殖酸进行动力学拟合,利用Langmuir、Freundlich、Temkin和Koble-Corrigan模型对硅藻土吸附腐殖酸进行热力学研究.动力学研究结果表明,与其他模型相比,线性准二级动力学模型更适合于描述硅藻土对腐殖酸的吸附,该吸附反应为化学吸附;热力学研究表明,Langmuir方程更加适合描述硅藻土对腐殖酸的吸附行为,ΔH0为正值,表明该吸附反应为吸热反应,ΔG0为负值,表明该吸附过程可自发进行.  相似文献   

8.
制备了交联海藻酸,从静态吸附方面研究了海藻酸交联前后对Cu~(2+)的吸附性能。用三种动力学模型(准一级动力学方程,准二级动力学方程,粒子扩散方程)对不同Cu~(2+)浓度、不同吸附时间的吸附曲线进行分析,探讨了吸附剂的吸附机理。结果表明准二级动力学模型的拟合度较好,海藻酸吸附Cu~(2+)是一个复杂的非均相扩散的化学吸附过程,表面络合和吸附剂内部扩散共同控制着吸附速率。交联后吸附的平衡时间延长,吸附量增大。交联后的海藻酸是一种价格低廉,绿色环保的吸附剂。  相似文献   

9.
利用小型固定床微分反应器对制备的原料半焦以及改性半焦吸附材料进行元素态Hg~0吸附平衡和动力学研究,分别采用Langmuir方程、Freundlich方程和Temkin方程对Hg~0吸附平衡数据进行拟合,采用颗粒内扩散方程、Elovich方程、表观一级动力学方程以及准二级动力学方程对Hg~0吸附动力学数据进行拟合。结果表明,用Langmuir方程可较好预测原料半焦(HL-SC)对元素态Hg~0的吸附平衡,其吸附动力学用颗粒内扩散模型拟合的线性相关性最好;盐酸改性后的半焦(HC-SC)对元素态Hg~0的吸附平衡用Freundlich方程预测较好,其吸附动力学符合表观一级动力学方程;高锰酸钾/热处理组合改性后的半焦(KM-HT-SC)对元素态Hg~0的吸附平衡用Langmuir方程预测较好,其吸附动力学符合准二级动力学方程。  相似文献   

10.
以假单胞菌(Pseudomonas sp.4-05)生物质为吸附材料,设置不同生物质添加量、不同二价锰离子(manganese,Mn(Ⅱ))起始质量浓度、不同温度和时间条件,研究Mn(Ⅱ)被生物质吸附的效率.采用Langmuir和Freundlich等温吸附模型及准一级动力学、准二级动力学和颗粒内扩散模型研究生物质对Mn(Ⅱ)的吸附特性.结果表明,超过一定范围后生物质添加量的增加不利于Mn(Ⅱ)吸附;但在5 g·L-1生物质添加量条件下,随着Mn(Ⅱ)质量浓度的增加其吸附容量也随之上升,说明溶液离子强度可促进Mn(Ⅱ)向生物质的传递.菌株4-05生物质对50 mg·L-1Mn(Ⅱ)的吸附平衡时间为90~120 min,且温度的升高有利于Mn(Ⅱ)吸附量的提高,说明该吸附属于吸热反应.Langmuir模型和Freundlich模型都能较好地拟合吸附反应,表明该吸附过程可能属于非均匀生物质表面的单层吸附,其理论吸附容量可达21.8 mg·g-1.动力学拟合结果表明,Mn(Ⅱ)被菌株4-05生物质吸附是一个表面扩散和粒内扩散同时进行的过程,但反应速率取决于前者.两种动力学模型计算得到的平衡吸附容量与实验值都比较接近,但准二级动力学型拟合的可决系数高于准一级动力学模型,说明Mn(Ⅱ)的吸附以化学吸附为主且受吸附剂和吸附质质量浓度的复合影响.  相似文献   

11.
纳米氧化铝吸附溶液中Cr(Ⅵ)的研究   总被引:3,自引:0,他引:3  
采用共沉淀法制备了纳米氧化铝,所制备的氧化铝为γ型纳米氧化铝,颗粒直径在7~10nm,比表面积为117.986m2/g.以纳米氧化铝作为吸附剂,研究了纳米氧化铝对溶液中的Cr(Ⅵ)吸附特性,结果表明,纳米氧化铝的投加量为2g/L, Cr(Ⅵ)的初始质量浓度为15mg/l,初始pH2时吸附效果最好,在4h左右达到吸附平衡,去除率达96.1%.纳米氧化铝对溶液中的Cr(Ⅵ)的吸附动力学符合拟二级动力学模型,相关系数达0.945以上.吸附过程符合Freundlich等温方程,相关系数接近1.吸附过程是自发的放热过程,在低温条件下更有利于纳米氧化铝吸附溶液中的六价铬.  相似文献   

12.
为了去除水中残留的低浓度苯酚,采用水蒸气活化法制备废轮胎活性炭,分析了废轮胎活性炭自水溶液吸附低浓度苯酚的吸附动力学特性,考察了吸附剂投加量和苯酚初始浓度对吸附过程的影响。分别采用拟一级反应、拟二级反应和颗粒内扩散反应模型对不同温度下的反应动力学数据进行拟合。研究结果表明:拟二级反应动力学模型能够较好地描述废轮胎活性炭吸附低浓度苯酚的动力学数据,颗粒内扩散影响吸附速率,但不是唯一的速率控制步骤,计算得到的表观吸附活化能表明,该吸附过程以物理吸附为主,废轮胎活性炭用量为0.3 g/L时,苯酚浓度小于2 μg/L。  相似文献   

13.
在废茶渣量1.5 g、pH 5.5、温度25℃、吸附时间2 h条件下,研究了不同Cr(Ⅵ)初始浓度为24 mg/L、40 mg/L、64mg/L、96 mg/L、120 mg/L、160 mg/L下的废茶渣对Cr(Ⅳ)的等温吸附曲线。Langmuir和Freundlich等温吸附模型都可以描述茶渣对Cr(Ⅵ)的吸附行为。但Freundlich等温吸附模型符合得更好。吸附过程中最大饱和吸附量为4.27 mg/g。吸附是优惠吸附过程。  相似文献   

14.
以盐酸为改性剂,对木耳进行改性制备吸附剂,用改性木耳吸附水溶液中的Cr(Ⅵ),考察了改性盐酸浓度、改性时间、改性温度、溶液pH值、吸附时间、温度等因素对改性木耳吸附Cr(Ⅵ)效果的影响。结果表明,采用5%的盐酸在35℃的条件下改性20 h的木耳对Cr(Ⅵ)的吸附效果较好;当温度为30℃、Cr(Ⅵ)溶液初始浓度为20 mg/L、pH值为2.0时,在改性木耳用量为2.5 g/L、吸附时间为300 min的条件下,Cr(Ⅵ)吸附量可达266 mg/kg;Lagergren一级动力学模型能很好的描述改性木耳吸附水溶液中的Cr(Ⅵ)的吸附动力学过程。  相似文献   

15.
采用深海中温菌Wangia profunda (SM A87)的胞外多糖对对硝基苯胺进行吸附试验。分别用热分析仪、FTIR和Zeta电位仪对胞外多糖进行表征分析,并研究了吸附时间、胞外多糖用量、pH和温度等方面对其吸附规律的影响。结果表明:胞外多糖可有效去除水中的对硝基苯胺。20?℃时,01?g/L的SM A87胞外多糖吸附处理50?mL初始浓度为15?mg/L的对硝基苯胺水样120?min后,对硝基苯胺的最大吸附率可达91%;Langmuir、Freundlich、Redlich Peterson等温方程和准二级动力学方程均能较好地描述SM A87胞外多糖吸附对硝基苯胺的热力学及动力学过程,由Langmuir方程得到SM A87胞外多糖对对硝基苯胺的最大吸附量为7692?mg/g(30?℃)。  相似文献   

16.
以玉米秸秆为生物质材料, 分别在250,350,450 ℃碳化温度下制备3种玉米秸秆生物炭(分别命名为B250,B350,B450), 利用红外光谱和扫描电镜对其结构和表面形貌进行表征, 并通过实验室模拟考察其对氮磷的吸附性能. 结果表明: 随着碳化温度的升高, 玉米秸秆生物炭表面的微孔形变程度加剧, 粗糙程度增大, 芳构程度提高, 稳定性增强; B250玉米秸秆生物炭稳定性相对较弱, 在吸附过程中存在较强的磷释放作用, 对磷呈现显著负吸附; B350和B450对磷的吸附动力学过程均可用Lagergren准二级动力学模型描述; 3种玉米秸秆生物炭对磷的吸附热力学过程均可用Langmuir方程描述, 对磷的饱和吸附量为B450>B350>B250; 玉米秸秆生物炭对氮的吸附动力学过程符合Lagergren准二级动力学模型, 吸附热力学过程符合Langmuir方程, 对氮的吸附速率为B450>B350>B250, 饱和吸附量为B450>B350>B250.  相似文献   

17.
改性污泥基吸附剂对水中铬(Ⅵ)的吸附性能研究   总被引:1,自引:0,他引:1  
以城市污水厂脱水污泥为原料,采用添加发泡剂辅助的方法制备了污泥基吸附剂,并对部分污泥基吸附剂进行3 mol/L HNO_3改性,研究了2种改性污泥基吸附剂对Cr(Ⅵ)的吸附行为.结果表明:HNO_3改性改善了污泥基吸附剂对Cr(Ⅵ)的吸附性能,pH是影响污泥基吸附剂吸附去除Cr(Ⅵ)的关键因素,最适pH在1.0~3.0,最佳吸附时间为3 h.25 ℃下改性污泥基吸附剂吸附Cr(Ⅵ)符合Langmuir吸附模型,准二级动力学模型能很好地描述HNO_3改性前后污泥基吸附剂的吸附行为.  相似文献   

18.
以废茉莉花茶渣作为吸附剂,对含Cr(Ⅵ)溶液进行了吸附研究。分别考察了吸附时间、茶渣投加量、Cr(Ⅵ)初始浓度、茶渣粒径、温度、pH值等因素对废茉莉花茶渣吸附Cr(Ⅵ)的影响。在吸附时间2 h、茶渣投加量为30 g/L、Cr(Ⅵ)初始浓度为40 mg/L、茶渣粒径60目、pH值2.5时,茶渣对Cr(Ⅵ)吸附率达98.7%。温度越高,茶渣对Cr(Ⅵ)吸附效果越好。废茉莉花茶渣对Cr(Ⅵ)具有较好的吸附能力,是比较合适的重金属离子吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号