首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Combinatorial microRNA target predictions   总被引:59,自引:0,他引:59  
  相似文献   

2.
Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.  相似文献   

3.
4.
5.
6.
7.
Retention of juvenile traits in the adult reproductive phase characterizes a process known as neoteny, and speculation exists over whether it has contributed to the evolution of new species. The dominant Corngrass1 (Cg1) mutant of maize is a neotenic mutation that results in phenotypes that may be present in the grass-like ancestors of maize. We cloned Cg1 and found that it encodes two tandem miR156 genes that are overexpressed in the meristem and lateral organs. Furthermore, a target of Cg1 is teosinte glume architecture1 (tga1), a gene known to have had a role in the domestication of maize from teosinte. Cg1 mutant plants overexpressing miR156 have lower levels of mir172, a microRNA that targets genes controlling juvenile development. By altering the relative levels of both microRNAs, it is possible to either prolong or shorten juvenile development in maize, thus providing a mechanism for how species-level heterochronic changes can occur in nature.  相似文献   

8.
9.
Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster   总被引:28,自引:0,他引:28  
Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth. In addition, VEGF levels were unaffected by Myc, but enhanced neovascularization correlated with downregulation of anti-angiogenic thrombospondin-1 (Tsp1) and related proteins, such as connective tissue growth factor (CTGF). Both Tsp1 and CTGF are predicted targets for repression by the miR-17-92 microRNA cluster, which was upregulated in colonocytes coexpressing K-Ras and c-Myc. Indeed, miR-17-92 knockdown with antisense 2'-O-methyl oligoribonucleotides partly restored Tsp1 and CTGF expression; in addition, transduction of Ras-only cells with a miR-17-92-encoding retrovirus reduced Tsp1 and CTGF levels. Notably, miR-17-92-transduced cells formed larger, better-perfused tumors. These findings establish a role for microRNAs in non-cell-autonomous Myc-induced tumor phenotypes.  相似文献   

10.
11.
Target mimicry provides a new mechanism for regulation of microRNA activity   总被引:21,自引:0,他引:21  
MicroRNAs (miRNA) regulate key aspects of development and physiology in animals and plants. These regulatory RNAs act as guides of effector complexes to recognize specific mRNA sequences based on sequence complementarity, resulting in translational repression or site-specific cleavage. In plants, most miRNA targets are cleaved and show almost perfect complementarity with the miRNAs around the cleavage site. Here, we examined the non-protein coding gene IPS1 (INDUCED BY PHOSPHATE STARVATION 1) from Arabidopsis thaliana. IPS1 contains a motif with sequence complementarity to the phosphate (Pi) starvation-induced miRNA miR-399, but the pairing is interrupted by a mismatched loop at the expected miRNA cleavage site. We show that IPS1 RNA is not cleaved but instead sequesters miR-399. Thus, IPS1 overexpression results in increased accumulation of the miR-399 target PHO2 mRNA and, concomitantly, in reduced shoot Pi content. Engineering of IPS1 to be cleavable abolishes its inhibitory activity on miR-399. We coin the term 'target mimicry' to define this mechanism of inhibition of miRNA activity. Target mimicry can be generalized beyond the control of Pi homeostasis, as demonstrated using artificial target mimics.  相似文献   

12.
DNA methylation inhibits gene expression in animal cells, probably by affecting chromatin structure. Biochemical studies suggest that this process may be mediated by methyl-specific binding proteins that recruit enzymatic machinery capable of locally altering histone modification. To test whether DNA methylation actually has a role in the assembly of chromatin during normal development, we used cell transfection and a transgene construct genetically programmed to be either methylated or unmethylated in all cell types of the mouse. Chromatin immunoprecipitation (ChIP) analysis shows that the presence of DNA methylation brings about the deacetylation of histone H4 and methylation of Lys9 of histone H3 (H3 Lys9) and prevents methylation of Lys4 of histone H3 (H3 Lys4), thus generating a structure identical to that of methylated sequences in the genome. These results indicate that the methylation pattern established in early embryogenesis is profoundly important in setting up the structural profile of the genome.  相似文献   

13.
In RNA interference (RNAi), double-stranded RNA (dsRNA) is processed into short interfering RNA (siRNA) to mediate sequence-specific gene knockdown. The genetics of plant RNAi is not understood, nor are the bases for its spreading between cells. Here, we unravel the requirements for biogenesis and action of siRNAs directing RNAi in Arabidopsis thaliana and show how alternative routes redundantly mediate this process under extreme dsRNA dosages. We found that SMD1 and SMD2, required for intercellular but not intracellular RNAi, are allelic to RDR2 and NRPD1a, respectively, previously implicated in siRNA-directed heterochromatin formation through the action of DCL3 and AGO4. However, neither DCL3 nor AGO4 is required for non-cell autonomous RNAi, uncovering a new pathway for RNAi spreading or detection in recipient cells. Finally, we show that the genetics of RNAi is distinct from that of antiviral silencing and propose that this experimental silencing pathway has a direct endogenous plant counterpart.  相似文献   

14.
MicroRNAs can generate thresholds in target gene expression   总被引:2,自引:0,他引:2  
MicroRNAs (miRNAs) are short, highly conserved noncoding RNA molecules that repress gene expression in a sequence-dependent manner. We performed single-cell measurements using quantitative fluorescence microscopy and flow cytometry to monitor a target gene's protein expression in the presence and absence of regulation by miRNA. We find that although the average level of repression is modest, in agreement with previous population-based measurements, the repression among individual cells varies dramatically. In particular, we show that regulation by miRNAs establishes a threshold level of target mRNA below which protein production is highly repressed. Near this threshold, protein expression responds sensitively to target mRNA input, consistent with a mathematical model of molecular titration. These results show that miRNAs can act both as a switch and as a fine-tuner of gene expression.  相似文献   

15.
16.
17.
MicroRNAs (miRNAs) are a class of short ( approximately 22-nt) noncoding RNA molecules that downregulate expression of their mRNA targets. Since their discovery as regulators of developmental timing in Caenorhabditis elegans, hundreds of miRNAs have been identified in both animals and plants. Here, we report a technique for visualizing detailed miRNA expression patterns in mouse embryos. We elucidate the tissue-specific expression of several miRNAs during embryogenesis, including two encoded by genes embedded in homeobox (Hox) clusters, miR-10a and miR-196a. These two miRNAs are expressed in patterns that are markedly reminiscent of those of Hox genes. Furthermore, miR-196a negatively regulates Hoxb8, indicating that its restricted expression pattern probably reflects a role in the patterning function of the Hox complex.  相似文献   

18.
The molecular controls that govern the differentiation of embryonic stem (ES) cells remain poorly understood. DGCR8 is an RNA-binding protein that assists the RNase III enzyme Drosha in the processing of microRNAs (miRNAs), a subclass of small RNAs. Here we study the role of miRNAs in ES cell differentiation by generating a Dgcr8 knockout model. Analysis of mouse knockout ES cells shows that DGCR8 is essential for biogenesis of miRNAs. On the induction of differentiation, DGCR8-deficient ES cells do not fully downregulate pluripotency markers and retain the ability to produce ES cell colonies; however, they do express some markers of differentiation. This phenotype differs from that reported for Dicer1 knockout cells, suggesting that Dicer has miRNA-independent roles in ES cell function. Our findings indicate that miRNAs function in the silencing of ES cell self-renewal that normally occurs with the induction of differentiation.  相似文献   

19.
Individuals with 22q11.2 microdeletions show behavioral and cognitive deficits and are at high risk of developing schizophrenia. We analyzed an engineered mouse strain carrying a chromosomal deficiency spanning a segment syntenic to the human 22q11.2 locus. We uncovered a previously unknown alteration in the biogenesis of microRNAs (miRNAs) and identified a subset of brain miRNAs affected by the microdeletion. We provide evidence that the abnormal miRNA biogenesis emerges because of haploinsufficiency of the Dgcr8 gene, which encodes an RNA-binding moiety of the 'microprocessor' complex and contributes to the behavioral and neuronal deficits associated with the 22q11.2 microdeletion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号