首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
人民币纸币序列号、面额号定位与分割   总被引:1,自引:0,他引:1  
随着经济的发展和繁荣,纸币的流通量越来越大,银行或其它金融机构常需要对序列号的信息进行采集用于分类和防伪。本文在研究纸币图像的Sobel和Canny边缘检测结果和纸币本身的特点以后,提出基于边缘检测和投影法的三步序列号分割方法,即序列号所在左侧区域的定位、序列号与面额号所在区域的准确定位、序列号与面额号的辨别与分割三个步骤。本文还对纸币的面向和倒置与否进行识别,使得算法可以应用于更为复杂的情况。  相似文献   

2.
纸币是人们日常生活交易必不可少的部分,假币交易纠纷和暴力抢劫等事件在社会上屡次发生,纸币冠字号识别是我国纸币鉴别技术标准之一。结合现代嵌入式系统开发技术的发展,笔者提出了嵌入式纸币冠字号识别系统设计方案,该方案包括整体设计思路、主要功能模块设计和系统软件流程设计。  相似文献   

3.
纸币自动清分可以有效提高银行的工作效率,基于图像处理技术的纸币自动清分系统的识别准确率对于纸币自动清分系统非常关键.基于机器视觉知识与模式识别的理论,并结合纸质人民币的图像特点,提出了纸质人民币序列号图像识别处理算法、"奖惩"机制下的线性传感算法和序列号区域特征提取方法.对纸币图像进行倾斜校正、局部特点提取、灰度增强和图像分块等处理后,将上述方法运用于采用CIS传感器的纸币图像处理系统中.实验证明,该方法具有较高的识别准确率,取得了理想的纸币自动清分效果.  相似文献   

4.
基于卷积神经网络能够直接从训练样本中提取特征并且具备权值共享等优势,本文提出了利用两级卷积神经网络实现纸币冠字号的识别方法。在字符分割过程中,考虑到待识别对象因破损、脏污等情况而引起的问题,提出了窗口移动配准法。实验表明,识别率可达99.99%以上,识别时间能控制在5 ms以内。  相似文献   

5.
为避免在处理掌纹识别时人工提取掌纹特征,提出使用卷积神经网络(CNN)来处理掌纹识别问题。首先根据掌纹的几何形状特点进行预处理,切割出掌纹的感兴趣区域(ROI);然后将感兴趣区域进行归一化并组成一个二维矩阵作为卷积神经网络的输入;再使用批量随机梯度下降算法对网络进行训练,得到最优的网络参数;最后对测试掌纹进行分类识别,分类器使用Softmax。应用于香港理工大学掌纹数据库(v2)的掌纹识别率达到99.15%,单张掌纹的识别时间小于0.01 s,验证了方法的有效性。  相似文献   

6.
利用残差网络(ResNet)50,结合卷积块注意力模块(CBAM)机制,提出了一种基于CBAM-ResNet50的民国纸币图像检索技术,提升了对相似纸币的检索能力.设计并实现了基于Windows和Ubuntu系统环境下的民国纸币图像检索系统,并搭建了基于Flask的Web应用服务.所提取的民国纸币图像特征具有更强的辨识度,大幅提高了检索速度,在图形处理器(GPU)上可达毫秒级.使用缩略图搜索民国纸币图片,对相似度排名第1的图像的检索准确率可以达76.3%,相似度排名前6的图像检索准确率可以达92.5%.  相似文献   

7.
8.
卷积神经网络的研究进展综述   总被引:3,自引:0,他引:3  
深度学习(deep learning,DL)强大的建模和表征能力很好地解决了特征表达能力不足和维数灾难等模式识别方向的关键问题,受到各国学者的广泛关注.而仿生物视觉系统的卷积神经网络(convolutional neural network,CNN)是DL中最先成功的案例,其局部感受野、权值共享和降采样三个特点使之成为智能机器视觉领域的研究热点.对此,本文综述CNN最新研究成果,介绍其发展历程、最新理论模型及其在语音、图像和视频中的应用,并对CNN未来的发展潜力和发展方向进行了展望和总结.  相似文献   

9.
在复杂交通场景中,公安和交管部门对车型识别的实时性和精度提出了更高要求。针对当前假牌、套牌、无牌车辆处理占用大量警力、检索效率低下、非智能化等一系列问题,提出了一种基于GoogleNet深度卷积神经网络的车型精细识别方法,设计了合理的卷积神经网络滤波器大小和数目,优选了激活函数和车型识别分类器,构建了一个新的卷积神经网络轿车车型精细识别模型框架。实验结果表明,在车型精细识别测试中,所提出模型的识别率达到了97%,较原始GoogleNet模型有较大提升,而且,新模型有效地减少了训练参数的数量,降低了模型的存储空间。车型精细识别技术可应用于智能交通管理领域,具有重要的理论研究价值与实践意义。  相似文献   

10.
针对卷积神经网络(CNN)在交通标志识别过程中出现的梯度弥散而引起的识别率低的问题,给出了基于改进CNN结构的交通标志识别方法.实验结果表明:该方法能够有效提高识别精度,防止梯度弥散.  相似文献   

11.
为了提高卷积神经网络(CNN)的泛化性和鲁棒性,改善无人机航行时识别目标图像的精度,提出了一种CNN与概率神经网络(PNN)相结合的混合模型。利用CNN提取多层图像表示,使用PNN提取特征对图像进行分类以替代CNN内部的BP神经网络,采用均方差和降梯度法训练模型,通过将预处理的图像传输到CNN-PNN模型,对图像纹理和轮廓进行分类识别,并将此模型的仿真结果与卷积神经网络模型、卷积神经网络-支持向量机模型的结果进行对比。仿真结果表明,与其他两种模型相比,CNN-PNN模型具有更好的精准度,识别率高达96.30%。因此,CNN-PNN模型能够快速有效地识别图像,准确度和实时性较高,在图像识别等方面具有很好的应用前景。  相似文献   

12.
针对在有冗余图像信息干扰下进行人脸有效特征点提取时精度不高的问题,提出了基于级联卷积神经网络的人脸特征点检测算法.在该算法中:输入层读入规则化的原始图像,神经元提取图像的局部特征;池化层进行局部平均和降采样操作,对卷积结果降低维度;卷积层和池化层分布连接,迭代训练,输出特征点检测结果.该算法采用Python语言编程实现,在人脸数据集进行仿真实验,结果表明该算法对人脸特征点有较高的识别率.  相似文献   

13.
针对当前中国检测桥梁裂缝依赖人工目测,危险系数极大的落后现状,研究了一种基于数字化和智能化的检测方法,以提高桥梁安全诊断效率,降低危险系数。结合机器视觉和卷积神经网络技术,利用Raspberry Pi处理器采集和预处理图像,分析裂缝图像的特点,选取效果检测和识别裂缝效果最佳处理算法,改进裂缝分类的卷积神经网络模型(CNN),最终提出一种新的智能裂缝检测方案。实验结果显示:该方案能够找到超出桥梁裂缝最大限值的所有裂缝,并可以有效识别裂缝类型,识别率达90%以上,能够为桥梁裂缝检测提供参考数据。  相似文献   

14.
针对人工提取雷达辐射源信号特征不完备、时效性低等问题,提出一种基于一维卷积神经网络和双向门控循环单元的识别方法.首先,提取信号的模糊函数主脊并进行去噪处理;其次,利用一维卷积神经网络学习模糊函数主脊的内在抽象特征;然后引入双向门控循环单元对一维卷积神经网络提取到的特征进行再处理;最后,将特征映射到特征空间并通过Softmax分类器进行分类识别.实验结果表明,该方法在信噪比为0 dB时能保持99.67%的识别率,即使在-6 dB环境中识别率仍能达到90%左右,证实了该方法的有效性和在低信噪比下的稳定性.  相似文献   

15.
小波神经网络在人脸识别中的应用   总被引:1,自引:0,他引:1  
人脸识别是一个涉及生理学、心理学、图像处理、计算机视觉、模式识别和数学等多个学科的前沿课题。小波神经网络是在小波分析研究获得突破的基础上提出的一种前馈性网络,避免了BP网络等结构设计上的盲目性,网络训练过程从根本上避免了局部最优等非线性优化问题,有较强的函数学习能力和推广能力。基于小波神经网络,文中提出了一种新的人脸识别算法。该算法利用小波多分辨特性和神经网络的鲁棒性和记忆性,同时结合了加速网络收敛速度的小波神经网络步长调整算法。实验证明该算法有高的检测率和有效性。  相似文献   

16.
以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN) 方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。  相似文献   

17.
卷积神经网络随着深度和结果复杂度的不断增加,其参数量和计算量大大制约了它的应用场景,本文在SueezeNet网络结构基础上引用分组卷积并采用Channel-shuffel来解决分组卷积后的信息不流通问题。以减少原有网络结构的的参数量提高网络运行效率。在ORL数据集的验证表现也表明,在网络参数减少的情况下分类精度和收敛效率并不会有降低甚至略有提高。可以体现分组卷积在结构轻量化上的有效性。  相似文献   

18.
提出运用双层卷积神经网络模型实现基于足底压力图像的步态识别方法.首先,对足底压力数据采集系统采集的图像作相应预处理;然后,用双层卷积神经网络模型学习得到足底压力图像的单层和双层卷积特征;最后,将卷积特征训练分类器得到分类结果.实验结果验证了该算法的有效性.  相似文献   

19.
结合机器人的工作原理以及卷积神经网络(CNN)在图像分类中的应用,提出了一种基于卷积神经网络的壁面障碍物检测识别算法.首先,以壁面障碍物准确识别为目标,构建壁面障碍物图像库;然后,通过对VGG-16网络简化后进行优化,得到适合壁面障碍物准确识别的卷积神经网络模型.在此基础上,设计该网络由输入层、4层卷积层、2层池化层、1层全连接层以及输出层组成,进一步利用3×3卷积核对训练样本进行卷积操作,并将所获取的特征图以2×2领域进行池化操作.重复上述操作后,通过学习获取并确定网络模型参数,得到最佳网络模型.实验结果表明,障碍物的识别准确率可达99.0%,具有良好的识别能力.  相似文献   

20.
基于改进的BP网络数字字符识别   总被引:1,自引:0,他引:1  
提出了一种基于改进的BP网络方法来实现数字字符识别.通过对BP网络的神经元的研究与学习,设计了一种结构合理,收敛速率快的BP网络.试验测试结果表明,改进的BP网络方法对印刷体数字的识别率达到了100%,对手写数字的识别率达到了98%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号