共查询到20条相似文献,搜索用时 62 毫秒
1.
Apriori算法是关联规则挖掘中的经典算法,一直是数据挖掘领域的研究热点。传统的Apriori算法由于产生过多的无用的候选项集以及需要多次扫描数据库导致在一定程度上限制了算法的效率。本文针对这一问题,提出一种新的RF-Apriori算法。该算法首先对数据进行二元处理;然后利用项集的反单调性减少候选项集的产生,从而提高算法效率。实验结果表明,RF -Apriori算法效率明显优于Apriori算法。 相似文献
2.
以Apriori算法为例介绍并分析了挖掘最大频繁项集的过程。针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了一种基于数据流频繁项集挖掘的新的EC算法。 相似文献
3.
提出了对基于频繁模式矩阵Fp-array的挖掘的改进算法。首先对各项的投影矩阵预处理划分成若干同维矩阵,并根据同维矩阵的权值对剩余未搜索项进行预先判断,进而对搜索最大频繁项目集进行有效剪枝,减少了搜索范围。经过实验和算法分析,证明了改进算法具有明显的优越性。 相似文献
4.
鉴于高维数据的稀疏性和分类数据特点,探讨了专门针对高维分类数据的聚类方法.首先将原始数据集转换成频繁项集,再通过改造频繁模式树以及给出的剪切策略,挖掘出事务的最大频繁项集,并基于最大频繁项集(MFI)的两个属性,将具有相同MFI的对象归于一类,由此提出了基于最大频繁项集的聚类算法.通过对分类数据集的实验,表明该算法具有相当的稳定性、健壮性和有效性. 相似文献
5.
在挖掘最大频繁项目集的过程中,通过改变最小支持度阈值可以挖掘更有用的最大频繁项目集,为此提出了一种最大频繁项目集更新挖掘算法UAMMFI(Updating Algorithm for Mining Maximal Frequent Itemsets)。算法基于改进后的频繁模式树结构,在更新挖掘过程中,不需产生候选项目集和条件模式树,并且充分利用先前已挖掘的最大频繁项目集中包含的信息,快速更新挖掘出最小支持度阈值变化后的最大频繁项目集。实验结果表明,算法能够高效更新挖掘最大频繁项目集。 相似文献
6.
叶福兰 《成都大学学报(自然科学版)》2014,(2):148-150,162
基于条件模式树的最大频繁模式挖掘算法在挖掘过程中将扫描事务数据库两次,且产生了大量的候选项目集,产生最大频繁模式过程中比较次数较多,总体效率较低.提出改进后的最大频繁模式挖掘策略,利用二维表保存事务出现项目的情况,通过最大频繁模式的相关性质减少了挖掘的项数及产生的频繁模式集,减少比较的次数. 相似文献
7.
分析了基于频繁模式的关联规则算法Fptree,给出了一种基于二进制表示的改进算法,详细介绍了该算法的主要思想,算法实现方案.并通过实例比较了两种算法,证明新算法提高了挖掘规则的效率. 相似文献
8.
传统的频繁模式挖掘算法产出大量的频繁模式,这些大量的频繁模式对于后期的分析、处理以及理解都带来了相当大的挑战.针对上述问题,该文提出了一种改进的压缩频繁模式挖掘算法,该算法基于CFP-树通过对传统频繁模式挖掘算法的改进能够从大量的频繁模式中选择出规模更小的频繁模式代表集合,从而起到减小庞大的频繁模式挖掘结果规模的目的.实验中还将该算法和现有的RPlocal算法进行了对比,结果表明改进的压缩频繁模式挖掘算法能够在合理的时间及容错范围内获得更小的频繁模式代表集,同时大大降低了时间复杂度,提高了挖掘效率. 相似文献
9.
针对垂直数据分布数据库FP-tree生长基本算法中存在的链接点表空间随问题规模线性增加的问题提出一种改进算法.采用定长的链接点表进行分段扫描,在空间需求恒定的前提下构造FP-tree.证明了改进算法与基本算法构造的FP-tree是同构的.实验与分析结果表明,当应用于同一数据集时,改进算法所需空间恒定. 相似文献
10.
发现频繁情节的改进算法 总被引:1,自引:0,他引:1
在事件序列的数据挖掘中,一个重要的步骤就是发现频繁情节,一旦发现频繁情节就能导出描述该序列行为的情节规则.基于逐级(level-wise)搜索算法WINEPI,提出了一种发现频繁情节的改进算法.该算法通过一个新的引理,帮助进一步确定下一级中感兴趣的情节组合,从而获得了较高质量的候选集,缩短了执行时间,对实际数据和仿真数据的实验结果表明,本算法是有效的。 相似文献
11.
针对Apriori算法的不足,提出了一种新的优化算法——IApriori.该算法应用散列技术优化产生频繁-2项集,优化连接操作减少连接判断的次数,通过对候选项集编码来减少扫描数据库的次数,优化逻辑"与"运算减少不必要的"与"操作次数,缩短生成频繁项集的时间.IApriori算法仅需3次扫描数据库.研究结果表明,该算法具有快速、直观、节省内存等优点. 相似文献
12.
在分析当前Apriori算法及其改进算法的基础上,提出了一种将Apriori算法与物流信息挖掘相结合的Apriori改进算法.通过Apriori改进算法与原Apriori算法挖掘结果的比较,说明了Apriori改进算法不仅缩小了剪枝扫描数据库的规模而且减少了生成频繁项目集的候选项目集. 相似文献
13.
一种基于Apriori的高效关联规则挖掘算法的研究 总被引:1,自引:0,他引:1
为了从海量的信息资源库中进行析取、识别和发现潜在正确和有用、前所未知的、最终可理解的知识,从数据挖掘技术的研究入手,对关联规则挖掘算法Apriori算法的关键思想以及性能进行了研究,在此基础上分析和探讨了Apriori Mend算法,并给出了该算法的实现思想和步骤,同时通过实例说明了算法的执行过程,该算法提高了原算法的效率. 相似文献
14.
15.
提出了满足DTD结构情况下XML查询语句中频繁路径的选择算法,即从大量的XML查询路径表达式中找出最频繁出现的路径.首先对XML查询语句进行离散化处理,然后基于不产生候选集的频繁模式挖掘算法,实现了XML频繁查询路径的选择,最后基于DTD结构重构包含频繁路径的XML查询.实验研究表明,所提出方法具有一定的有效性及合理性. 相似文献
16.
介绍了关联规则挖掘的情况,并在分析关联规则的数据挖掘算法的基础上,提出一个改进的Apriori算法.新算法仅对数据库扫描一次,就能找出所有的频繁项集,从而提高了挖掘的效率,具有一定的实用性 相似文献
17.
提出并实现了一种新的称为频度路径树的XML缓存模型,FTree Cache.新模型根据频繁查询路径模式对源XML文件进行投影,生成相应的缓存文件.对用户提交的查询进行判断,提取相应的缓存文件来响应.通过对XML的投影缓存,可以有效降低查询的响应时间和大大减少内存的占用量.实验表明了方法的有效性,对内存的占用大约是原来的20%,响应时间约为原来的43%. 相似文献
18.
根据经典Apriori性质和算法思想,提出了一种基于关联矩阵的挖掘频繁项集的算法.应用实例分析表明,该算法在挖掘过程中,只需扫描一次数据库,有效地减少了扫描数据库的次数,提高了算法的效率. 相似文献
19.
GECISM(GEneral computer immune system model)是基于规则匹配检测的计算机免疫系统,免疫识别规则对“自我”和“非我”特征的表征能力直接影响到GECISM的性能,所以挖掘高效免疫识别规则的是GECISM的一个重要研究内容。改进后的Apriori算法以系统调用序列为数据源,从“自我”集和“非我”集中计算出频繁谓词,进而产生免疫识别规则。这些规则反映了“自我”和“非我”的内在特征,是GECISM进行“非我”检测的判据。 相似文献