首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于最小二乘支持向量机的煤矿瓦斯预测   总被引:2,自引:0,他引:2  
瓦斯涌出量受多种自然因素和开发技术的影响,是一个非线性、高维的问题.提出了改进的PSO算法与LSSVM算法相结合对瓦斯涌出量进行预测的新方法.实验结果表明,该模型预测精度更高,泛化能力更强.  相似文献   

2.
为应对当前复杂非线性的宏观经济形势与电力消耗情况,本文提出了一种自适应粒子群算法改进的最小二乘支持向量机负荷预测模型。根据粒子群中粒子的成熟程度对其进行分类,对不同类别的粒子分别采取不同的位置更新方式,可以保持粒子种群多样性,避免造成局部最优。利用自适应粒子群算法优化最小二乘支持向量机的模型参数,经过实证分析能够一定程度提高模型的预测精度,可以为中长期负荷预测工作提供一些的参考。  相似文献   

3.
通过静力触探试验指标结合扰动黄土试样的液限、塑限及含水量等指标用最小二乘支持向量机方法进行建模,提出了静力触探试验指标和湿陷系数的非线性关系模型,并引入粒子群优化算法进行模型反演分析,确定最优参数。通过6个对比勘探点的50组试样实例应用分析,显示了最小二乘支持向量机是一种较为有效的非线性建模方法,粒子群优化算法进行模型参数优化能够保证全局最优。验证结果表明模型的精度较高,有一定的实用价值。  相似文献   

4.
基于最小二乘支持向量机回归的基坑变形预测   总被引:1,自引:0,他引:1  
将最小二乘支持向量机回归用于基坑变形预测.根据基坑位移的实测时间序列资料,应用最小二乘支持向量机回归建立了基坑位移与时间的关系模型.研究结果表明,最小二乘支持向量机回归用于基坑变形预测,具有较高的预测精度.与通常采用的BP神经网络相比,该方法具有预测误差小、计算快速、所需数据少等优点.  相似文献   

5.
提出一种基于最小二乘支持向量机的福建省GDP预测方法.采用径向基核函数进行仿真模拟,经过参数选优建立了精度较高的预测模型.预测结果表明,利用最小二乘支持向量机进行预测具有误差小、拟合程度高等优点,可适用于GDP的预测.  相似文献   

6.
通过计算机对人脸进行分析,从而确定身份的技术统称为人脸识别,其具体内容包括图像预处理、特征选择和提取、分类。首先介绍了支持向量机和最小二乘支持向量机的基本思想和数学模型,推导了最小二乘支持向量机的算法步骤,在对人脸图像进行预处理的基础上,采用奇异值分解扩展算法提取人脸特征,然后再采用上述算法对人脸图像进行分类。通过实验可知本文中的算法可以对人脸图像进行有效分类,对解决小样本分类问题是有效的、可行的。  相似文献   

7.
为了进一步提高短期风速预测的精度,分析了一种改进的风速预测方法.该方法考虑风速发生变化的极值点对总体预测误差的影响,以及预测曲线较实际曲线产生的滞后,分别对预测数据进行了极值点修正和偏移量处理.在对未来1 h风速进行预测时,相比粒子群优化(PSO)的最小二乘支持向量机(LS-SVM)模型、未经优化的LS-SVM模型及反向传播(BP)神经网络模型,所提出的模型具有较高的预测精度和运算速度.算例结果表明,改进的LS-SVM算法是进行短期风速预测的有效方法.  相似文献   

8.
针对大坝变形影响因素的复杂性以及监测数据的非线性、随机波动大和预测难度大等问题,提出一种改进自适应粒子群(particle swarm,PSO)算法的混合核函数最小二乘支持向量机(least squares support vector machine,LSSVM)模型,实现了大坝水平变形的时间序列预测方法.基于Mer...  相似文献   

9.
为了提高网络流量预测准确性,将最小二乘支持向量机应用于网络流量预测。介绍了最小二乘支持向量机的原理与方法,并将该模型应用于实际网络流量预测计算。结果表明,该方法能有效地进行流量预测,相对于BP神经网络和ARMA模型方法,该方法具有更好的预测精度。  相似文献   

10.
为分析深基坑在开挖过程中的变形规律,为安全生产提供有效信息,采用最小二乘支持向量机理论,利用粒子群算法对支持向量机的核参数进行优化,建立深基坑水平位移预测模型,并将预测结果与实际监测结果进行对比.研究结果表明:优化后的最小二乘支持向量机模型收敛速度快,泛化能力强,预测结果与实际监测数据有很好的一致性,精度高于传统的预测模型,对深基坑安全监控有一定的实用价值.  相似文献   

11.
为了以有限的实验数据确定预应力锚杆布置的合理间距,结合山东省境内的104国道界河立交桥加筋土挡土墙的失稳加固工程实例,首先通过最小二乘支持向量机拟合优化对象与优化目标之间的复杂函数关系建立模型,然后采用现场实验数据样本进行模型训练,最后采用人工鱼群算法对模型进行优化,获得合理的布置间距,并通过加固效果监测验证了参数的合理性.结果表明,该法具有建模容易、收敛快和计算精度高等特点,说明该模型是合理可行的.  相似文献   

12.
The performance of the support vector machine models depends on a proper setting of its parameters to a great extent. A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed. A multifault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines. The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine, and the precision and reliability of the fault classification results can meet the requirement of practical application. It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.  相似文献   

13.
The performance of the support vector machine models depends on a proper setting of its parameters to a great extent.A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed.A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines.The results show that the proposed fault classification model outperforms the neural network trai...  相似文献   

14.
为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的支持向量机参数,对支持向量回归机进行训练.应用训练完成的支持向量回归机预测下一年的黄金价格.结果证明,PSO-SVM的预测精度高于BP神经网络,PSO-SVM适用于黄金价格预测.  相似文献   

15.
研究了加权最小二乘支持向量机与最小二乘法的关系.证明了用加权最小二乘支持向量机作函数估计与在特征空间中用最小二乘法得到的解是一致的.加权最小二乘支持向量机选择核相当于最小二乘法选择基函数组.由此提出了采用加权最小二乘支持向量机解决最小二乘法问题的思想,保证解具有良好的推广性、鲁棒性与稀疏性.  相似文献   

16.
青霉素发酵过程具有时变性和高度非线性,对菌体浓度等的在线测量十分困难。最小二乘支持向量机建模,虽然提高了预测速度,但是预测精度有所欠缺。为提高预测精度,本文在最小二乘支持向量机中引入模糊思想,采用一种基于类中心距离的模糊隶属度函数,为青霉素发酵过程菌体浓度建立预测模型。原理分析与仿真结果表明模糊最小二乘支持向量机建模方法相比于单一的最小二乘支持向量机建模,它的预测精度高,性能更加优越。  相似文献   

17.
基于支持向量机回归的煤层含气量预测   总被引:3,自引:1,他引:3  
为了探讨煤层含气量的有效预测方法,将支持向量机回归方法用于建立煤层含气量预测模型。利用所选的测井参数,采用基于小样本理论的支持向量机回归方法建立测井参数与煤层含气量的关系模型,对煤层含气量进行预测。实例分析表明,选取适当的测井参数,利用支持向量机回归方法建立的煤层气含量预测模型,其预测结果与实测结果的误差小。  相似文献   

18.
支持向量机与最小二乘法的关系研究   总被引:33,自引:0,他引:33  
研究了支持向量机 (SVM)在二次损失函数下的优化问题解的形式 ,并与普通的最小二乘 (L S)估计问题进行了比较 ,得到了几乎完全一致的优化问题形式。由于 SVM在二次损失函数下的优化问题对应于一个欠定问题 ,该问题在最小二乘估计中有最小范数解。如果 SVM的参数选择合适 ,从理论上可以证明采用二次损失函数的 SVM函数拟合问题实际为约束最小二乘估计问题 ,并且该问题的解对应于最小范数最小二乘解。由于最小化范数解实际是 SVM在取某些参数时的一个特例 ,如果能够自动调整这些参数 ,则得到一类最小化范数解。由此提出了采用 SVM解决最小二乘法问题的思想 ,由于 SVM的优点 ,使解更加符合实际情况  相似文献   

19.
基于支持向量机的油气储量价值等级评价   总被引:1,自引:0,他引:1  
针对油气储量的特点,对油气储量价值的优劣等级进行划分。选取影响油气储量价值等级的7个因素,即储量规模、储量丰度、储层埋深、原油黏度、渗透率、凝固点和采收率,采用最小二乘支持向量机模型对油气储量价值等级划分进行仿真,并运用网格搜索法确定最小二乘支持向量机模型的参数惩罚因子C和核函数参数σ。结果表明,最小二乘支持向量机是评价油气储量价值等级的有效方法,训练正判率达到95%,检验正判率达到81%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号