首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
碳纳米管/聚氨酯复合材料制备方法的研究   总被引:1,自引:0,他引:1  
首先对碳纳米管进行酸化处理,在聚氨酯合成过程中分别利用共混法和原位聚合法制备碳纳米管/聚氨酯复合材料,利用碳纳米管的性能对聚氨酯材料进行改性。利用傅立叶变换红外光谱分析仪研究了酸化对碳纳米管性能的影响,微机控制电子万能试验机、动态力学分析仪和数字超高电阻、微电流测量仪对碳纳米管聚氨酯复合材料力学、热力学和导电性能进行了研究,对比研究了两种制备方法对改善聚氨酯材料性能的不同影响。结果表明:通过两种方法制备的复合材料均可以提高聚氨酯材料的力学、热力学和导电性能,原位聚合法制备的复合材料在性能上的提高要比共混法更为明显有效。  相似文献   

2.
为提高聚丙烯腈力学性能,利用溶液共混的方法将酸化的多壁碳纳米管(CNTs)添加到聚丙烯腈(PAN)基体中制备出碳纳米管/聚丙烯腈复合材料薄膜。采用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)、拉力机和动态力学分析仪(DMA)进行表面观察、结构测定及力学性能表征。结果表明,酸化处理后的CNTs与PAN基体间有一定的界面作用,材料力学性能随碳纳米管含量增加而增强,当CNTs的重量百分含量为20%时,比纯PAN薄膜的拉伸强度提高了约63%,动态力学储能模量提高了约560%。  相似文献   

3.
多壁碳纳米管在低密度聚乙烯基体中的分散性   总被引:1,自引:0,他引:1  
研究了以低密度聚乙烯(LDPE)为基体、以多壁碳纳米管(MWNTs)为增强体的复合材料的制备方法,利用SEM、电子拉力机和电阻计对碳纳米管在基体中的分散性、材料的力学性能和电学性能进行了表征。此材料的渗流阈值在10wt%~15wt%之间,其电阻率下降。复合材料的拉伸模量随纳米碳管含量的增加而提高。  相似文献   

4.
为掌握碳纳米管对SBS改性沥青性能的影响,制备不同掺量碳纳米管SBS改性沥青,并对其常规性能进行试验研究。结果表明:碳纳米管能改善SBS改性沥青高温性能、低温性能、抗老化性能和存储稳定性,且整体上掺量增加时对上述性能的改善效果增强;碳纳米管会使SBS改性沥青高温性能温度敏感性增强,同时温度降低时其对SBS改性沥青低温性能的改善效果减弱,且其对SBS改性沥青长期抗老化性能的改善幅度强于短期抗老化性能。考虑综合性能,采用碳纳米管改善SBS改性沥青性能时,其掺量不应超过2.0%。  相似文献   

5.
利用膨胀剂对亚麻纤维进行膨化改性以提高其轧染染色时的染色性能.通过比较膨化剂浓度、改性温度和时间的改变对提高亚麻纤维染色性能的影响,优化出提高亚麻纤维染色性能的最佳改性工艺.通过对改性前后的亚麻纤维进行染色深度值测定、显微镜观察及拉力测试,研究了改性后亚麻布轧染染色性能提高的原因及改性前后亚麻纤维的性能变化.  相似文献   

6.
丙烯酸树脂改性的水性聚氨酯红外光谱分析   总被引:6,自引:0,他引:6  
通过两树脂的机构共混,化学共混即核-壳型聚合过程,及设计聚氨酯,丙烯酸树脂分子链之间形成化学键等方法,研究了用丙烯酸树脂改性的水性聚氨酯的红外光谱特征。红外光谱分析表明:丙烯酸树脂改性的水性聚氨酯材料中存在着氢键行为。  相似文献   

7.
董博为 《河南科技》2013,(16):195-196
综述了碳纳米管在分析化学和催化剂载体方面的应用的进展,碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。碳纳米管可作为储氢容器,可制成很多性能优异的复合功能材料,可填充金属和氧化物,制成模具。本文重点讨论了碳纳米管在分析和催化剂方面的引用进展,包括碳纳米管在扫描显微镜探针,气体传感器和化学分离等分析化学的应用。另外,从碳纳米管的储氢性能、电学性能和管腔结构对催化效果的影响论述了碳纳米管作为催化剂载体的应用进展。  相似文献   

8.
本文研究了双金属材料的组织与性能,采用有限元软件建立这类材料与其组分材料力学性能之间的几何模型并进行了应变应力分析;得出试样单向拉伸过程沿宽度方向产生的附加应力及其对这类材料变形的影响应力集中在缺陷处,不锈钢材料侧的应力较大。  相似文献   

9.
采用纳米高岭土对FeCoNi合金镀层进行改性,通过纳米复合电镀工艺增强FeCoNi合金镀层的耐磨性能和显微硬度.以醋酸钾为插层剂,采用超声插层法对高岭石进行剥片处理,得到插层纳米高岭土,并应用在纳米复合电镀技术中制备了纳米高岭土改性FeCoNi电镀层.采用扫描电镜对所制备的材料进行形貌分析,通过摩擦磨损实验检测了镀层的摩擦学性能.结果表明,纳米高岭土有细晶强化的作用,使改性镀层的表面致密度得到了提升,硬度提高,摩擦因数有所降低.  相似文献   

10.
【目的】针对低温飞行环境下CFRP材料可能出现的弯曲断裂问题。【方法】本研究对预埋不同质量分数(碳纳米管质量为100 mg、300 mg、500 mg、600 mg、700 mg)碳纳米纸的CFRP层合板进行常(低)温条件下的三点弯曲试验。【结果】通过分析CFRP层合板的应力-应变曲线,探究温度及碳纳米纸中碳纳米管的质量分数对CFRP层合板弯曲性能产生的影响。【结论】试验结果表明,常温条件下,预埋碳纳米纸能明显提高CFRP层合板的弯曲性能。低温条件下,随着碳纳米纸质量分数的增高,其对CFRP层合板弯曲性能的增强效果先上升后下降,其中碳纳米管质量为600 mg时增强效果最佳。  相似文献   

11.
外消旋聚乳酸/多壁碳纳米管复合材料的 制备及性能研究   总被引:1,自引:1,他引:0  
采用溶液共混法制备了外消旋聚乳酸/多壁碳纳米管(PDLLA/MWNT-COOH)复合材料.分别采用差示扫描量热仪(DSC)、热重分析仪(TGA)、扫描电镜(SEM)对复合材料进行了表征,并借助纳米压痕测试系统和高阻计对复合材料进行了力学和电学性能测试.结果显示,复合材料的玻璃化温度都在53℃左右;热稳定性能随着碳纳米管的加入而提高;当碳纳米管的重量分数不高于5%时,其团聚现象比较轻微;弹性模量和硬度在碳纳米管重量分数为5%时达到最大值;体积电导率随碳纳米管含量的增加不断提高,当碳纳米管含量为7%时,复合材料的体积电导率较纯的PDLLA增加了8个数量级.  相似文献   

12.
以聚苯乙烯磺酸(PSSA)为掺杂剂,插层原位聚合制得水分散性聚苯胺(PANI)/蒙脱土(MMT)复合材料.利用红外光谱、X-射线、热分析等对其进行了表征,并测试了变温电导率.结果表明,蒙脱土以剥离的片层结构存在于聚苯胺基体中,该复合材料具有很好的热稳定性和较稳定的变温电导率.  相似文献   

13.
在140℃,氮气保护的条件下,使L-丙交酯开环与凹凸棒石黏土(AT)表面上的(Si-OH)发生反应,生成的低分子量聚乳酸接枝到经过处理的凹凸棒石黏土上,然后将接枝凹凸棒石黏土与聚乳酸(PLA)景丁二酸丁二醇酯(PBS)进行熔融共混,制备PLA/PBS/凹凸棒石黏土(AT)复合材料.通过FTIR、SEM、力学性能测试及维卡软化测试仪对复合材料进行分析和袁征.实验结果表明,凹凸棒石黏土的最佳加入量为1.5%;PBS的加入可以大大提高PLA的韧性,当加入量为25%时,综合力学性能最佳.  相似文献   

14.
碳纤维具有优良的力学性能和化学性能,是制造高性能复合材料的理想增强材料,因此,碳纤维的力学性能得到了广泛地研究,本文概述了碳纤维的力学性质及其碳纤维复合材料的应用.  相似文献   

15.
噻吩浓度对陶瓷和石英为基底的CVD法制备碳纳米管的影响   总被引:2,自引:2,他引:0  
采用二甲苯为碳源,二茂铁为催化剂,分别在陶瓷和石英基底上进行化学气相沉积(CVD),制备出多壁碳纳米管(MWNTs)及大面积的碳纳米管列阵膜。结果表明,噻吩的加入量对能否生成碳纳米管及其产量具有重要影响。对于不同基底,噻吩浓度对碳纳米管生长的影响亦不同,石英基底对噻吩浓度的敏感性更强,在石英基底上能够生长出碳纳米管列阵膜。  相似文献   

16.
单体接枝改性制备炭黑填充型天然橡胶复合材料   总被引:4,自引:0,他引:4  
在炭黑(HAF)、天然(NR)胶乳为主的体系中,引入适当的单体(M),利用单体对橡胶乳液接枝的同时,与炭黑表面发生接枝反应,实现其与橡胶大分子链通过化学键相连接,制备炭黑填充型天然橡胶复合材料(NR/HAF/M),复合材料表现为良好的力学性能、动态力学性能及耐老化性能。  相似文献   

17.
理论分析了流速梯度场中碳纳米管重新定向排列机理,其断面的流速呈抛物面分布,碳纳米管在流股剪切力作用下沿拉伸方向重新定向排列.用反复拉伸法制备出了碳纳米管沿拉伸方向定向排列且均匀分散的碳纳米管/聚甲基丙烯酸甲酯复合材料,实验结果证明拉伸法和速度梯度场中定向排列碳纳米管的理论相符.  相似文献   

18.
镀镍单壁碳纳米管镁基复合材料的微观组织研究   总被引:1,自引:0,他引:1  
用化学镀法在单壁碳纳米管(SWNTs)外表面包覆Ni-P层,厚度约为20 nm.采用全液态搅拌铸造的方法,制备了镀镍单壁碳纳米管镁基复合材料,随镀镍单壁碳纳米管加入量的增加,复合材料的晶粒尺寸减小,但过多的加入会导致增强体团聚现象严重.观察复合材料的拉伸断口,发现碳纳米管在基体中能起到连接作用和阻碍裂纹行进的作用,提高复合材料的性能.  相似文献   

19.
采用硝酸氧化结合高速离心的方法提纯电弧放电法制备的单壁碳纳米管.UV-vis-NIR吸收光谱和Raman光谱研究表明此方法能有效去除碳纳米管粗品中的金属催化剂、无定形碳、碳纳米聚合物及石墨卷曲体等杂质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号