首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
以低熔点醋酸锂(70℃)和醋酸锰(80℃)为原料,在不添加任何燃料的条件下,用熔盐燃烧合成法制备尖晶石型LiMn2O4正极材料.研究了600℃点燃温度下,不同保温时间以及2次焙烧的工艺条件对产物的影响.结果表明,在600℃通过延长保温时间不能得到单相尖晶石型LiMn2O4产物,只能得到主晶相为尖晶石型LiMn2O4的产物.保温时间1 h时产物中有Mn3O4和Mn2O3 2种杂质,而保温时间达3 h及以上时,产物中只有Mn2O3杂质,其中以保温时间6 h得到的LiMn2O4含量最高,杂质最少;产物经600℃2次焙烧12 h后可得到单相尖晶石型LiMn2O4物质,且增加焙烧时间大于12 h后对样品中成分基本无影响;产物中LiMn2O4的结晶性随焙烧时间增加而逐渐增加.  相似文献   

2.
以晶体醋酸锂或尿素为反应体系的液相,研究了不同锂和锰为原料,液-固燃烧合成制备尖晶石型LiMn2O4的影响.实验结果表明,不同锂和锰为原料对液-固燃烧合成LiMn2O4的影响较大,其中醋酸锂和二氧化锰为原料,可得到单相的尖晶石型LiMn2O4的产物,但加入尿素不利于合成LiMn2O4;以碳酸锂和二氧化锰或碳酸锂和碳酸锰为原料,产物中都有杂质,但碳酸锂和二氧化锰为原料优于碳酸锂和碳酸锰为反应原料.  相似文献   

3.
采用微波诱导液相无焰燃烧法快速制备LiMn1.925Cu0.075O4正极材料.通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)测试手段表明,Cu掺杂未改变尖晶石LiMn2O4的晶体结构;随着焙烧时间的延长,颗粒尺寸逐渐增大,晶界逐步清晰;Cu2+进入LiMn2O4晶格中.电化学测试表明,二次焙烧8 h的LiMn1.925Cu0.075O4正极材料表现出优异的电化学性能.在1 C倍率下,首次放电比容量为110.9mA·h·g-1,循环400次后容量保持率63.9%;在5 C和10 C高倍率下可实现1 000次循环,首次放电比容量分别为108.9、94.8 mA·h·g-1,保持率分别为61.3%、68.1%. Cu掺杂有效抑制Mn的溶解和Jahn-Teller效应,提高材料的结构稳定性与电化学...  相似文献   

4.
尖晶石型LiMn2O4作为锂离子电池的正极材料之一是近年来的研究热点。尖晶石型LiMn2O4的合成方法有许多种,主要有固相法、水热合成法、共沉淀法、溶胶一凝胶法等。对各种合成方法的优缺点进行比较。同时就近年来科技工作者对LiMn2O4的性能优化作综合论述,主要包括掺杂和表面包覆,并对今后LiMn2O4的发展方向做了阐述。  相似文献   

5.
以硝酸锰、硝酸锂和尿素为原料制备尖晶石型LiMn2O4锂离子电池电极材料,考察了Li和Mn的比例、尿素用量、预置炉温、焙烧温度及时间等工艺条件对合成产物的组成结构及电化学性能的影响。最佳工艺条件下制备的产物具有纯净的尖晶石结构,均一的颗粒度及优良的电化学性能。  相似文献   

6.
尖晶石型LiMn2O4 电极材料的制备及性能研究   总被引:9,自引:0,他引:9  
以硝酸锰、硝酸锂和尿素为原料制备尖晶石型LiMn2O4 锂离子电池电极材料, 考察了Li 和Mn 的比例、尿素用量、预置炉温、焙烧温度及时间等工艺条件对合成产物的组成结构及电化学性能的影响。最佳工艺条件下制备的产物具有纯净的尖晶石结构, 均一的颗粒度及优良的电化学性能。  相似文献   

7.
采用控制结晶法制备的球形MnCO3前驱体与Li2CO4在高温煅烧条件下进行固相反应合成了高能量密度尖晶石型LiMn2O4微球。通过扫描电子显微镜对不同反应时间形成的球形MnCO3产物观察表明,球形MnCO3前驱体是由许多小粒子通过静电作用力组装而成的球形微米二次粒子,其形成经历了一个成核一聚结的过程。球形MnCO3前驱体经高温锂化后可以直接获得高振实密度的LiMn2O4微球(1.8g·cm^-3),煅烧前后形貌未发生明显改变。LiMn2O4微球在常温和高温(55℃)条件下的电化学性能测试表明,在0.5C(1C=148inA·g^-1)倍率时,常温下的首次充放电比容量分别为117.3和116.0mAh·g^-1,充放电能量密度分别为480.8和462.0Wh·kg^-1,50次循环后的放电能量密度保持率为98.8%;高温下的首次充放电比容量分别为119.6和115.6mAh·g^-1,充放电能量密度分别为487.6和462.9Wh·kg^-1,50次循环后的放电能量密度保持率仍达到92.3%。  相似文献   

8.
以CrF3为掺杂原料,采用高温固相制备了锂离子电池正极材料尖晶石LiMn2-xCrxO4-3xF3x.采用XRD、SEM和充放电能实验对其结构和性能进行了表征.实验结果表明,阴阳离子共掺杂对尖晶石LiMn2O4的循环性能有一定的改善.其中LiMn2-xCrxO4-3xF3x(x=0.10)室温下循环20次后放电比容量衰减率为首次容量(120.58 mAh/g)的4.73%.  相似文献   

9.
用包裹沉淀法合成了具有尖晶石结构的可用作锂离子二次电池正极材料的锂锰氧(LiMn2O4) 化合物.对材料进行了X射线衍射、循环伏安、充放电等测试,实验结果表明,所合成的材料具有标准尖晶石结构和较好的电化学可逆性能,该材料在ECDMC(1∶1,体积比) +1 mol/LLiPF6 电解液中表现出较优良的充放电性能,其放电容量达120 mAh/g.  相似文献   

10.
采用蔗糖辅助燃烧法制备了富锂型锂离子电池正极材料Li1.1Mn2O4, XRD表明合成的Li1.1Mn2O4样品具有完整的尖晶石结构. SEM显示样品是由纳米粒子组成. 0.5 C 初始放电比容量为115 mAh/g, 10 C放电比容量可达109 mAh/g. 10 C倍率下循环200次容量保持率为90%. 实验结果表明该材料倍率和循环性能均优良.  相似文献   

11.
采用溶胶-凝胶并结合热处理工艺制备纳米LiMn2O4粉体,利用热重-差热分析,X射线衍射,透射电镜,循环伏安,充放电测试等方法对前驱体的热分解行为、粉体的结构、形貌及电化学性质进行了表征.结果表明:直接以聚丙烯酸(PAA)为螯合剂合成了稳定的溶胶和凝胶, PAA与金属离子摩尔比为0.3:1时,获得凝胶在烧结过程中产生的燃烧热促进了尖晶石LiMn2O4的形成,避免杂相Mn2O3的产生.随着烧结温度的升高,LiMn2O4颗粒粒径逐渐增大,结晶度提高,晶体生长更加完整.其中,750°C烧结8 h获得了由纳米粒子构成、分布均匀、形貌规整、结构稳定的LiMn2O4粉体,首次放电比容量可达135 mAh/g,20次循环后比容量仍有124 mAh/g,具有良好的充放电循环性能以及较高的充放电效率.  相似文献   

12.
对高温固相烧结法制备锂离子电池正极材料的合成工艺进行研究.根据正交试验结果确定的最佳合成工艺条件为反应温度750 ℃,反应时间24 h,锂锰原子数之比nLi∶nMn=1.05∶2.对优化条件下合成的正极材料LiMn2O4进行X射线衍射分析、扫描电镜观察和电化学性能检测.结果表明,该工艺条件下合成的LiMn2O4粉体具有良好的尖晶石结构形貌.组装成的电池在常温下初始比容量为97.38 mA*h/g.  相似文献   

13.
通过聚甲基丙烯酸甲酯(PMMA)胶晶模板法制备尖晶石型LiMn2O4材料,并探讨焙烧温度对材料性能的影响.运用热重分析(TG)、X线衍射(XRD)、扫描电镜(SEM)、充放电测试和循环伏安测试等方法对LiMn2O4样品的结构、形貌以及电化学性能进行表征和测试.研究结果表明:在不同温度下制备的LiMn2O4样品均具有较好的尖晶石型结构,且粒径分布均匀:在700℃时制备的LiMn2O4样品(S-700)具有最佳的电化学性能,在3.0~4.4 V时,0.2C倍率首次放电比容量为130.9 mA·h/g; 0.5C倍率首次放电比容量为126.4 mA·h/g,50次循环之后容量仍有102.7 mA·h/g,具有良好的循环稳定性.  相似文献   

14.
尖晶石型LiMn_2O_4正极材料因其高电压、低成本、高安全性等优点被广泛研究和应用,但其充放电过程中Li~+的嵌/脱会伴随着锰的溶解、电解液的腐蚀和Jahn-Teller效应等问题,使得电化学性能变差.表面包覆和离子掺杂是有效改善LiMn_2O_4容量衰减和提高其循环稳定性的主要方法.其中,表面包覆材料通常有各类碳材料、氧化物、氟化物、金属单质和磷酸盐等.综述了不同碳源和方法对LiMn_2O_4进行碳包覆后的性能影响,展望了碳包覆对LiMn_2O_4正极材料未来的研究方向与发展前景.  相似文献   

15.
为进行尖晶石LiMn2O4的改性优化,合成了大小为100~400 nm,呈八面体形貌的LiMn2O4尖晶石单晶,并采用XRD、SEMI、CP等方法进行了分析,旨在对该尖晶石单晶的充、放电性能进行表征.  相似文献   

16.
文章采用高温固相法合成尖晶石LiMn2O4,并采用液相包覆的方法对其进行改性处理。采用XRD、SEM、XPS以及电池测试系统等,研究了所制备材料的结构、组成、性能和包覆机理。实验结果表明:表面处理后的LiMn2O4循环性能显著提高,以A12O3对尖晶石LiMn2O4进行表面包覆,使LiMn2O4颗粒不与电解液直接接触,可以防止锰离子溶解在电解液中,获得结构稳定、循环性能优异的锂离子电池正极材料;同时Al2O3会和电解液中微量的HF反应,减小了HF对锰离子溶解的加速作用。  相似文献   

17.
通过化学沉淀和陈化制备了粒径均匀和结晶度高的四氧化三锰,以其作为合成锰酸锂的前驱体,再经高温固相合成了一种微米级单晶锰酸锂颗粒,并用X-射线衍射和扫描电镜对其进行了表征.结果表明:所合成的样品为纯相尖晶石LiMn2O4,一次颗粒大小均匀,平均粒径在2μm左右,为晶格发育完整的八面体尖晶石单晶.电性能测试的数据表明,所得到的尖晶石型锰酸锂与工业电解二氧化锰合成的锰酸锂相比,较大程度的改善了电池材料的比容量、倍率性能和循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号