共查询到20条相似文献,搜索用时 93 毫秒
1.
为提高金融资产预测能力,该文采用深度学习长短期记忆(LSTM)神经网络模型对上海期货交易所(SHFE)和伦敦金属期货交易所(LME)的铝、铜、镍、铅、锡和锌6种有色金属期货价格分别进行长、短期预测,与传统机器学习多层感知器(MLP)模型以及线性自回归移动平均(ARIMA)模型进行对比研究.数据源于Wind数据库和国际货... 相似文献
2.
介绍一种基于双向长短期记忆神经网络(Bi-directional long short-term memory,Bi-LSTM)的岩相预测方法,综合利用测井和地震数据进行高效准确的岩相预测.通过合成地震记录,进行井震数据的时深匹配,以地震吸收衰减数据、纵波阻抗、密度和伽马拟声波阻抗作为输入,以岩相作为标签,通过Bi-L... 相似文献
3.
机械钻速是钻井优化、缩短钻井周期的关键因素,传统的机械钻速预测大多是在钻井后进行钻井分析,预测效率和精度低、地层适用性不广。为了以更高效的方法预测得到高精度机械钻速,提出基于长短期记忆(LSTM)神经网络的深度序列机械钻速预测方法。采集实时钻井数据集,使用皮尔逊相关系数衡量各特征之间的相关性,筛选出井深、伽玛射线、地层密度、孔隙压力、井径、钻时、排量、钻井液密度等8个参数。构建LSTM神经网络模型,训练LSTM模型并预测ROP,对预测结果进行分析,并用决定系数(R2)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)等指标对LSTM模型、BP模型和SVM模型性能进行对比分析。结果表明:LSTM模型其R2、RMSE和MAPE的值分别为0.948、1.151和17.075,相较于BP模型和SVM模型,其R2更大,RMSE和MAPE较小,说明LSTM模型预测性能更好。该方法有助于钻井工程师和决策者提前获得钻井信息,从而更好地规划钻井作业,缩短钻井周期,同时为钻井参数预测提供新的途径,能改善以往预测方法在处理复杂地层问题时... 相似文献
4.
5.
飞机着陆阶段是各飞行阶段中风险最大的阶段之一,可能会遇到阵风、跑道入侵、硬着陆和跑道超限等不安全事件。较长的着陆距离会增加着不安全事件发生的风险。为了降低发生不安全事件的风险,本文利用长短期记忆(long short term memory,LSTM)神经网络捕获时间序列飞行数据对时间的依赖性,研究了一种多步滚动预测策略来预测飞机着陆距离以进行实时预警,飞机着陆预测模型用于预测着陆距离。结果表明:与单步预测相比,该方法可以更好地捕捉飞行参数的时间变化。通过多组仿真实验验证基于LSTM神经网络模型的多步滚动预测方法的准确性与有效性。 相似文献
6.
7.
随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以预测非常重的污染;SANKAR等使用多元线性回归对空气质量进行预测,但其实验结果表明线性模型预测精度低、效率慢;PéREZ等使用统计方法对空气质量进行预测,实验结果证明统计方法的预测精度比较低;WANG等采用改进的BP神经网络建立了空气质量指数的预测模型,其实验验证了BP神经网络收敛速度慢、容易陷入局部最优解的问题;YANG等利用相邻网格的空气质量浓度效应,建立了基于随机森林的PM_(2.5)浓度预测模型,通过实验过程证明网格划分程序削弱了后续空气质量分析的质量和效率。这些方法都难以从时间角度建模,其中预测精度低是比较重要的问题。因为预测精度低可能会导致空气质量预测结果出现较大的误差。针对空气质量研究中预测精度低的问题,提出了基于长短期记忆单元(long short-term memory,LSTM)的神经网络模型。该模型使用MAPE,RMSE,R,IA和MAE等指标来检测LSTM神经网络与对比模型的预测性能。由于Delhi和Houston是空气污染程度比较严重的城市,所以使用的实验数据集来自Delhi的Punjabi Bagh监测站2014—2016年的空气质量数据和Houston的Harris County监测站2010—2016年的空气质量数据。LSTM神经网络与多元线性回归和回归模型(SVR)的比较结果表明,LSTM神经网络适应多个变量或多输入的时间序列预测问题,LSTM神经网络具有预测精度高、速度快和较强的鲁棒性等优点。 相似文献
8.
9.
为了在交通拥堵预测算法中充分考虑各类因素的影响以及挖掘交通流数据隐含的深层特征,该文提出基于长短期记忆(Long-short term memory,LSTM)模型的交通拥堵预测方法。该方法充分考虑交通流特征、天气、节假日等因素,首先利用去噪自编码模型提取输入数据的核心特征,再使用LSTM模型长时记忆历史数据,二者结合对城市交通拥堵程度进行有效预测,通过与已有的交通拥堵预测模型进行对比,结果表明,该方法具有较高的预测准确度和鲁棒性,准确度能达到92%以上。 相似文献
10.
本文提出一种基于多路循环神经网络与深度学习的股票预测方法。针对股票的涨跌预测问题,使用分布式向量表示方法提取出股票相关的新闻文本特征,同时考虑到股票相关信息的时序性以及新闻影响的持续性特质,使用多路循环神经网络模型对所提取的特征与交易信息进行协同训练,从而获得历史信息的低维向量表示。最后将多个循环神经网络的输出进行拼接,利用深度神经网络共同对股票的涨跌进行分类预测。本文使用上证A股的价格与新闻数据进行实验,实验结果表明,本文所提出的方法在股票预测任务上具有明显的优越性。 相似文献
11.
位于中国西北部的东天山地区,拥有着复杂的地质条件,因此如何快速准确预测隧道掌子面前方的围岩质量的难度增大,准确客观反映岩体基本特性的围岩分类是隧道设计与施工的重要参考依据。旨在建立一种能客观准确评价东天山地区工程地质环境及预测围岩等级的方法,依托在建东天山隧道项目。首先,选取东天山特长隧道已开挖典型地质区段,以工程地质分区、高关联度物探技术参数指标及物探偏移图像为基础,组成机器学习训练样本;其次,采用Python语言基于TensorFlow深度学习框架编写深度学习网络算法训练样本,建立围岩类别预测模型;再次,采用新开挖段数据不断验证与优化模型;最后,将预测精度最高的模型推广应用于天山地区隧道围岩类别预测,结果表明联合隧道散射地震成像(tunnel seismic tomography, TST)偏移图像、地质分区与物探指标数据集训练出来的模型效果最好。 相似文献
12.
图像分割作为图像的分析与理解的基础环节,受到了诸多学者的广泛关注。本文结合了基于全卷积神经网络的语义分割技术与基于水平集方法的图像分割技术,使用DeepLab V2与 Distance Regularized Level Set Evolution(DRLSE)模型对一般的彩色图像进行分割。此外,本文还在 DRLSE 模型中加入了一个新的形状能量项,提高了零水平集的演化速度。数值实验结果验证了本文方法的有效性。 相似文献
13.
识别砂岩中的石英、长石和岩屑对判断沉积环境具有重要意义,但传统的人工识别方法存在主观性强、对经验依赖程度高等问题。本文利用深度学习、卷积神经网络等技术构建了一种基于Faster R-CNN目标检测算法的砂岩显微组分图像识别方法,实现了正交偏光下对薄片图像中石英、长石、岩屑三种组分的智能识别,三种组分平均识别准确率为89.28%。为了验证模型的可靠性,实验对比了不同算法和特征提取网络,结果表明:Faster R-CNN目标检测算法的识别效果优于YOLO V3、YOLO V4、YOLO V5s,ResNet50特征提取网络的表现效果优于VGG16。采用ResNet50特征提取网络的Faster R-CNN目标检测模型优势显著,它可以更好满足岩石薄片的识别要求,为传统的人工方法提供智能化技术方案。 相似文献
14.
提出了一种基于深度学习的CNN-LSTM-Concat快速DGA域名分类算法,使用多层一维卷积网络对域名字符进行序列化处理,LSTM网络层用于强化获取字符间长距离依赖关系。通过将LSTM的多序列输入转化为单向量输入,在保证检测性能的前提下,能够大幅提高训练和检测速度。实验证明,我们的方法对DGA域名分类的准率在公开数据集上达到98.32%。同时,在准确率相比主流的LSTM方法更高的情况下,检测时间比LSTM方法快6.41倍。 相似文献
15.
针对情感分析问题中长句和短句进行情感分类时不同的建模特点,提出了一种基于联合深度学习模型的情感分类方法。该方法融合长短期记忆模型(LSTM)与卷积神经网络(CNN)对影视评论数据进行情感极性判别,该方法采用LSTM模型对上下文进行建模,通过逐词迭代得到上下文的特征向量,采用CNN模型从词向量序列中自动发现特征,并从局部抽取特征后将局部特征整合成全局特征来提高分类效果。所提出的方法在COAE2016评测的任务2的情感极性分类任务中,其系统准确率获得最好结果。 相似文献
16.
鱼类自主游动的模拟问题一直是仿生学、鱼类行为学以及生态水力学等诸多学科共同关注的重要难题。建立一种基于流固耦合数值模拟技术与深度强化学习算法的智慧鱼体自主行为决策平台,可以实现鱼体在不同周围环境条件下以最优决策方案完成游泳任务。该平台采用深度强化学习算法实现鱼脑功能,模拟其不断学习和最终决策;通过浸没边界-Lattice Boltzmann方法对流场及鱼体运动进行实时模拟,可为鱼体提供丰富的训练样本并执行鱼脑决策。基于该平台对鱼类典型捕食运动以及卡门游动进行训练并分析其训练效果。仿真结果表明:在捕食游动问题中,具有不同初始位置偏角的鱼体均能以最优轨迹到达目标点;在卡门游动问题中,鱼体能自主调节尾拍频率,使之接近涡街脱落频率,进而从卡门涡场中吸收能量,以稳定步态在涡街中运动。在鱼类自主游动问题的研究方面,该决策平台较传统物理实验具有更强大的复杂流场适应性,并可为水利工程、生态环境工程等领域的数字孪生提供技术支持。 相似文献
17.
语音情感识别是人机交互的重要方向,可广泛应用于人机交互和呼叫中心等领域,有很大应用价值。近年来,深度神经网络在识别情感方面取得了巨大成功,但现有方法对高层语音特征提取会丢失大量原始信息并且识别准确率不高,本文提出了一种新的语音情感识别方法,由卷积神经网络从原始信号中提取特征,并在其堆叠一个2层长短时记忆神经网络,最终识别准确率达到91.74%,本文方法显著优于基于EMO-DB数据集等其他方法。 相似文献
18.
光伏发电是新兴的清洁能源发电方式之一,其光功率受辐照度等环境因素影响较大,导致注入电网的电量不稳定。采集的环境数据能准确预测发电量变化趋势,对电网平稳运行具有重要意义。现有光功率预测方法大多采用单个模型构建预测结构,当面对不同环境数据时预测结果不够稳定。文中提出一种基于双深度神经网络的光功率预测方法,该方法以BPNN(back propagation neural networks)和LSTM(long short term memory)为基础判别器,并通过遗传算法将二者融合为更加精确和鲁棒的光功率预测模型。在东北电网实际数据集上的实验结果表明,相比现有单一神经网络模型,文中提出的方法具有更高的判别精度,且预测结果更加稳定。 相似文献
19.
为了改善图像表情和图像序列表情识别效果,针对传统表情识别特征提取复杂和效果不理想问题,提出了一种深度残差网络和局部二值模式(local binary patterns,LBP)相结合的特征提取方法,利用深度残差网络提取数据集的空域特征,长短期记忆网络(long short-term memory,LSTM)处理时域特征,实现空域与时域特征的结合。研究了不同层数的残差网络、不同形式的LBP算子以及其他网络结构对人脸表情识别的影响,对比了支持向量机和随机森林实现的序列表情识别算法。在Cohn-Kanade数据集和AFEW6.0数据集上进行了验证,实验结果表明,算法在验证集上的准确率分别为73.1%和58.4%,相比其他算法有一定程度的提升。 相似文献
20.
随着深度学习技术的迅速发展,更复杂更先进的语义分割深度学习模型在地基云图检测分割任务中得到广泛研究和应用。首先开创性地对新发布的地基云图数据集进行整理概括;然后阐述了基于深度学习语义分割模型在地基云图分割方面的研究进展,详细地介绍了典型的语义分割网络模型;接着选取了部分优秀性能的语义分割模型在标准的数据集上训练和验证,系统性评估其在地基云图分割的性能,验证了语义分割模型在地基云图分割领域的适用性;最后提出对基于语义分割的自适应地基云图像素级分割研究的总结和展望。 相似文献