首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
D Colquhoun  E Neher  H Reuter  C F Stevens 《Nature》1981,294(5843):752-754
  相似文献   

2.
C D Benham  T B Bolton  R J Lang 《Nature》1985,316(6026):345-347
Acetylcholine, the major excitatory neurotransmitter to the smooth muscle of mammalian intestine, is known to depolarize smooth muscle cells with an apparent increase in membrane conductance. However, the ionic mechanisms that are triggered by muscarinic receptor activation and underlie this response are poorly understood, due in part to the technical problems associated with the electrophysiological study of smooth muscle. The muscarinic action of acetylcholine in certain neurones has been shown to involve the switching off of a resting K+ current (M-current) and a similar mechanism has recently also been identified in smooth muscle of amphibian stomach. We have now applied the patch-clamp technique to single smooth muscle cells of rabbit jejunum and find that muscarinic receptor activation switches on a nonselective, voltage-sensitive inward current. In addition, acetylcholine activates and then suppresses spontaneous K+ current transients, which are probably triggered by rises in intracellular Ca2+ in these cells.  相似文献   

3.
Inferred slow inward current in snail neurones   总被引:3,自引:0,他引:3  
H D Lux  R Eckert 《Nature》1974,250(467):574-576
  相似文献   

4.
5.
One model of synaptic transmission suggests that transmitters modify postsynaptic permeability through the intermediary of cyclic AMP. Thus, serotonin (5-hydroxytryptamine) evokes in molluscan neurones a decrease in a voltage-dependent K+ conductance which in turn generates a slow inward current when studied in steady voltage-clamp conditions. The serotonin-induced increase of the plateau phase of the spike of an Aplysia sensory neurone can be mimicked by both intracellularly injected cyclic AMP and extracellularly applied phosphodiesterase inhibitors, suggesting that cyclic AMP mediates the effect. We have tested whether a similar mechanism could account for the serotonin slow inward current in identified snail neurones and have found that the intracellular injection of cyclic AMP, but not of cyclic GMP or 5'-AMP, evokes a slow inward current showing similar voltage dependence, inversion potential and ionic properties to the serotonin slow inward current. Phosphodiesterase inhibitors at low concentrations (1-20 microM) potentiate the serotonin slow inward current and at higher concentrations evoke by themselves an inward current, partially or totally occluding the serotonin and cyclic AMP currents. Finally, we have found that in homogenates of pooled identified snail neurones serotonin stimulates the adenylate cyclase, increasing its activity by 50-100%.  相似文献   

6.
T M Egan  D Noble  S J Noble  T Powell  V W Twist 《Nature》1987,328(6131):634-637
In the heart, catecholamines affect pacemaker activity by shifting the activation curve for the nonspecific inward current and increasing both the calcium current, and the delayed potassium current. We report here that in mammalian ventricle there is another mechanism that seems to involve a sodium-dependent inward current. This is elicited by agents that increase intracellular cyclic AMP concentration, such as the beta-adrenergic agonist isoprenaline, and is unaffected by agents which block the three currents listed above, but is absent when external sodium is replaced with tetramethylammonium. Most interestingly, the intracellular pathway(s) linking the beta-receptor(s) to activation of the Ca current and the Na-dependent current, which in both cases presumably involves the intracellular concentration of cAMP, differ, as isoprenaline causes a persistent augmentation of the calcium current whereas the Na-dependent current often fades. These effects of isoprenaline are antagonized by acetylcholine. In unclamped cells, the Na-dependent current depolarizes the membrane to the potential range at which repetitive firing occurs. It may therefore be involved in the generation of ventricular arrhythmias.  相似文献   

7.
8.
Sodium-activated potassium current in cultured avian neurones   总被引:2,自引:0,他引:2  
C R Bader  L Bernheim  D Bertrand 《Nature》1985,317(6037):540-542
  相似文献   

9.
G K Aghajanian 《Nature》1985,315(6019):501-503
The excitability of various neurones in the mammalian central nervous system (CNS), ranging from motoneurones to serotonergic neurones, is enhanced by alpha 1-adrenoceptor agonists. Excitations mediated via alpha 1-adrenoceptors are associated with a slow depolarization and an increase in input resistance, probably resulting from a decrease in resting potassium conductance. However, the involvement of voltage-dependent transient currents in mediating alpha 1 excitatory effects has not been evaluated. An early transient outward current has been described which is important in regulating the frequency of repetitive firing; it is activated by depolarizing voltage steps from potentials more negative than rest and blocked by 4-aminopyridine. This current, which has been termed 'IA', was found originally in invertebrates and subsequently in various vertebrate neurones. The present single-electrode voltage-clamp study demonstrates an early transient outward current (IA) in serotonergic neurones which is suppressed by noradrenaline and the alpha 1-agonist phenylephrine; a suppression of IA may account in part for the acceleration of pacemaker activity induced by alpha 1-agonists in serotonergic neurones.  相似文献   

10.
B Gustafsson  M Galvan  P Grafe  H Wigstr?m 《Nature》1982,299(5880):252-254
  相似文献   

11.
膜片钳放大器瞬态电流伪差的自动补偿   总被引:2,自引:0,他引:2  
论述了膜片钳放大器中快、慢电容瞬态电流产生的原因和补偿原理,并采用了迭代算法,通过程序控制实现对快、慢电容所引起的瞬态电流伪差进行自动补偿.实验结果表明,该方法能快速有效地补偿快、慢电容瞬态电流,简化了实验操作,提高了实验效率。  相似文献   

12.
13.
A S Liotta  R Houghten  D T Krieger 《Nature》1982,295(5850):593-595
  相似文献   

14.
Identification of Na-Ca exchange current in single cardiac myocytes   总被引:18,自引:0,他引:18  
S Mechmann  L Pott 《Nature》1986,319(6054):597-599
In cardiac muscle the exchange of intracellular Ca2+ for extracellular Na+ is an important transport mechanism for regulation of the intracellular free Ca2+ concentration [( Ca]i) and hence the contractile strength of the heart. Due to its stoichiometry of greater than or equal to 3:1 Na+/Ca2+ (refs 3,5), Na-Ca exchange is supposed to generate a current across the cell membrane. It is thought that such a current may contribute to cardiac action potential and physiological or pathological pacemaker activity. Although the occurrence of Na-Ca exchange is well documented, a membrane current generated by this transport has not been identified unequivocally. Previous attempts to detect such a current in multicellular preparations, for example, by measuring small current differences after varying the extracellular ionic composition, although providing evidence, did not rule out other possible interpretations. Here we demonstrate that a transient rise in [Ca]i caused by release of Ca from sarcoplasmic reticulum (SR) generates a membrane current in cardiac myocytes. The dependence of this current on the transmembrane gradients for Na+ and Ca2+ and on membrane potential meets the criteria for a current produced by electrogenic Na-Ca exchange. Cyclic activation of this current by release of Ca from the SR can cause maintained spontaneous activity, suggesting that Na-Ca exchange contributes to certain forms of cardiac pacemaking.  相似文献   

15.
工程瞬态涡流问题的边界无单元方法求解   总被引:1,自引:3,他引:1  
以点插值方法构造形函数,推导了一种适合于求解工程电磁场瞬态涡流问题的边界点型无单元方法(BMFM),进行了详细的理论分析.与一般无单元方法以及边界元法构造形函数不同,BMFM对边界积分方程采用点插值法构造空间插值形函数,使空间插值形函数满足KFonecker delta条件,从而强加边界条件可以直接施加在边界点上.以金属长方柱的瞬态涡流分析作为数值算例证实了方法的正确性和有效性.  相似文献   

16.
Patch clamp techniques were applied to investigating the regulation of the inward K+-channels inVicia stomatal guard cells by cytoskeletal microtubules. The intracellular addition of either microtubule-disassembling reagent amprophos-methyl (APM) or microtubule-stabilizing reagent taxol resulted in significant inhibition of the inward K+-currents across the plasma membranes ofVicia stomatal guard cells. The results suggest that the activation of the inward K+-channels in stomatal guard cells requires proper dynamic organization of cytoskeletal microtubules. The regulation of the inward K+-channels in guard cells by microtubules may mediate the regulation of stomatal movements by cytoskeleton.  相似文献   

17.
18.
Nerve growth factor is a mitogen for cultured chromaffin cells   总被引:4,自引:0,他引:4  
L E Lillien  P Claude 《Nature》1985,317(6038):632-634
Nerve growth factor (NGF) is essential for the survival and differentiation of a number of neural crest derivatives, including sympathetic and sensory neurones. While early studies suggested that NGF might also have a mitogenic effect on these neurones, subsequent work has favoured the interpretation that NGF promotes cell survival or differentiation rather than proliferation. We have addressed the issue of a mitogenic effect of NGF using adrenal chromaffin cells, which are endocrine cells derived from the neural crest, and are closely related to sympathetic neurones. Adrenal chromaffin cells respond to NGF in vitro by expressing neuronal traits. We now report that NGF elicits a mitotic response in cultured chromaffin cells from young rats, and that this response is blocked by an antiserum to 2.5S NGF. The chromaffin cells that divided in response to NGF can subsequently become neuronal in the continued presence of NGF.  相似文献   

19.
D V Madison  R C Malenka  R A Nicoll 《Nature》1986,321(6071):695-697
The importance of second-messenger systems in controlling the excitability of neurones and other cells, through modulation of voltage- and calcium-dependent ionic conductances, has become increasingly clear. Cyclic AMP, acting via protein kinase A, has been identified as the second messenger for several neurotransmitters, and recent studies have suggested that activation of protein kinase C may have similar modulatory actions on neurones. Calcium and potassium currents have so far been shown to be the major ionic conductances modified by kinase activation. We now report that hippocampal pyramidal cells contain a previously undescribed voltage-dependent chloride current which is active at resting potential and is turned off either by membrane depolarization or by activation of protein kinase C by phorbol esters. We propose that this current may reside predominantly in the cell's dendritic membrane and thereby may regulate dendritic excitability.  相似文献   

20.
Myeloid differentiation protein-88 (MyD88) is a crucial adaptor protein in the innate immune response. A protective role for MyD88 in normal cardiac function has been proposed in a surgical hypertrophic model. To assess the in vivo role of MyD88 in cardiac remodeling, we generated transgenic mice with cardiac-restricted expression of a dominant negative mutant of MyD88 (dnMyD88). Surprisingly, dnMyD88 transgenic mice displayed characteristic features of heart failure; including heart weight increase, cardiomyocytes enlargement, interstitial fibrosis, and re-expression of “fetal” genes. Echocardiographic examination of dnMyD88 hearts revealed dilated chamber volume and reduced cardiac contractility. DnMyD88 mice died from heart failure before they were 7 months old, as shown by Kaplan-Meier analysis. Additionally, the heart failure phenotype of dnMyD88 mice was associated with abnormal activation of the Akt/GSK-3β signaling pathway. These data provide the first evidence that normal MyD88 signaling is crucial for maintaining the physiological function of the adult heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号