首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Telomeres shorten during ageing of human fibroblasts   总被引:132,自引:0,他引:132  
C B Harley  A B Futcher  C W Greider 《Nature》1990,345(6274):458-460
The terminus of a DNA helix has been called its Achilles' heel. Thus to prevent possible incomplete replication and instability of the termini of linear DNA, eukaryotic chromosomes end in characteristic repetitive DNA sequences within specialized structures called telomeres. In immortal cells, loss of telomeric DNA due to degradation or incomplete replication is apparently balanced by telomere elongation, which may involve de novo synthesis of additional repeats by novel DNA polymerase called telomerase. Such a polymerase has been recently detected in HeLa cells. It has been proposed that the finite doubling capacity of normal mammalian cells is due to a loss of telomeric DNA and eventual deletion of essential sequences. In yeast, the est1 mutation causes gradual loss of telomeric DNA and eventual cell death mimicking senescence in higher eukaryotic cells. Here, we show that the amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo. It is not known whether this loss of DNA has a causal role in senescence.  相似文献   

2.
Mouse p53 inhibits SV40 origin-dependent DNA replication   总被引:52,自引:0,他引:52  
p53 is a cellular phosphoprotein that is present at elevated concentrations in cells transformed by different agents. p53 complementary DNA expression-constructs immortalize primary cells in vitro and co-operate with an activated ras oncogene in malignant transformation. Several reports have implicated p53 in mammalian cell cycle control and specifically with events occurring at the G0-G1 boundary. p53 forms specific complexes with simian virus 40 (SV40) large-T antigen, and such complexes are found associated with both replicating and mature SV40 DNA in lytically infected cells. In an accompanying paper Gannon and Lane report that in in vitro plate-binding assays, mouse p53 can displace polymerase alpha from complex with T-antigen. We have examined the in vivo consequences of expressing wild-type and mutant p53 proteins from other species in SV40-transformed monkey cells. We report here that expression of mouse p53 results in a substantial and selective inhibition of SV40 origin-dependent DNA replication. In addition to any function in the G0-G1 transition, the data presented suggest that p53 may affect directly the initiation or maintenance of replicative DNA synthesis.  相似文献   

3.
J P Bruzik  T Maniatis 《Nature》1992,360(6405):692-695
Exon sequences present on separate RNA molecules can be joined by trans-splicing in trypanosomatids, Euglena, and in the nematode and trematode worms. Trans-splicing involves an interaction between a 5' splice site present in a spliced leader RNA and a 3' splice site located near the 5' end of pre-messenger RNAs. In vitro trans-splicing of artificial mammalian pre-mRNAs has been reported, but the efficiency of splicing appears to depend on sequence complementarity between the two substrates. There has been speculation that some natural pre-mRNAs can be trans-spliced in mammalian cells in vivo, but alternative interpretations have not been ruled out. Here we show that spliced leader RNAs can be accurately trans-spliced in mammalian cells in vivo and in vitro. Both nematode and mammalian 3' splice sites can function as acceptors for trans-splicing in vivo. These results reveal functional conservation in the splicing machinery between lower eukaryotes and mammals, and they directly demonstrate the potential for trans-splicing in mammalian cells.  相似文献   

4.
Requirement for the replication protein SSB in human DNA excision repair   总被引:40,自引:0,他引:40  
D Coverley  M K Kenny  M Munn  W D Rupp  D P Lane  R D Wood 《Nature》1991,349(6309):538-541
Replication and repair are essential processes that maintain the continuity of the genetic material. Dissection of simian virus 40 (SV40) DNA replication has resulted in the identification of many eukaryotic replication proteins, but the biochemistry of the multienzyme process of DNA excision repair is less well defined. One protein that is absolutely required for semiconservative replication of SV40 DNA in vitro is human single-stranded DNA-binding protein (SSB, also called RF-A and RP-A). SSB consists of three polypeptides of relative molecular mass 70,000, 34,000 and 13,000, and acts with T antigen and topoisomerases to unwind DNA, allowing the access of other replication proteins. Human SSB can also stimulate the activity of polymerases alpha and delta, suggesting a further role in elongation during DNA replication. We have now found a role for human SSB in DNA excision repair using a cell-free system that can carry out nucleotide excision repair in vitro. Monoclonal antibodies against human SSB caused extensive inhibition of DNA repair in plasmid molecules damaged by ultraviolet light or acetylaminofluorene. Addition of purified SSB reversed this inhibition and further stimulated repair synthesis by increasing the number of repair events. These results show that a mammalian DNA replication protein is also essential for repair.  相似文献   

5.
W G Nelson  L F Liu  D S Coffey 《Nature》1986,322(6075):187-189
DNA topoisomerases have been proposed to function in a variety of genetic processes in both prokaryotes and eukaryotes. Here, we have assessed the role of DNA topoisomerase II in mammalian DNA replication by determining the proximity of newly synthesized DNA to covalent enzyme-DNA complexes generated by treating cultured rat prostatic adenocarcinoma cells with teniposide. Teniposide (VM-26), an epipodophyllotoxin, is known to interact with mammalian DNA topoisomerase II so as to trap the enzyme in a covalent complex with DNA. We have found that the teniposide-induced trapping of such complexes requires MgCl2, is stimulated by ATP and is inhibited by novobiocin. The formation of covalent complexes seems to be reversible on removal of teniposide. Furthermore, analysis of the covalent complexes formed between 3H-thymidine pulse-labelled DNA and topoisomerase II following teniposide treatment reveals a direct association of the enzyme with nascent DNA fragments. Our results suggest that DNA topoisomerase II may interact with newly replicated daughter DNA molecules near DNA replication forks in mammalian cells.  相似文献   

6.
An inducible DNA replication-cell division coupling mechanism in E. coli   总被引:71,自引:0,他引:71  
O Huisman  R D'Ari 《Nature》1981,290(5809):797-799
Cell division is a tightly regulated periodic process. In steady-state cultures of Enterobacteriaceae, division takes place at a well defined cell mass and is strictly coordinated with DNA replication. In wild-type Escherichia coli the formation of cells lacking DNA is very rare, and interruptions of DNA replication arrest cell division. The molecular bases of this replication-division coupling have been elusive but several models have been proposed. It has been suggested, for example, that the termination of a round of DNA replication may trigger a key event required for cell division. A quite different model postulates the existence of a division inhibitor which prevents untimely division and whose synthesis is induced to high levels when DNA replication is perturbed. The work reported here establishes the existence of the latter type of replication-division coupling in E. coli, and shows that the sfiA gene product is an inducible component of this division inhibition mechanism which is synthesized at high levels after perturbations of DNA replication.  相似文献   

7.
A Toll-like receptor recognizes bacterial DNA   总被引:225,自引:0,他引:225  
DNA from bacteria has stimulatory effects on mammalian immune cells, which depend on the presence of unmethylated CpG dinucleotides in the bacterial DNA. In contrast, mammalian DNA has a low frequency of CpG dinucleotides, and these are mostly methylated; therefore, mammalian DNA does not have immuno-stimulatory activity. CpG DNA induces a strong T-helper-1-like inflammatory response. Accumulating evidence has revealed the therapeutic potential of CpG DNA as adjuvants for vaccination strategies for cancer, allergy and infectious diseases. Despite its promising clinical use, the molecular mechanism by which CpG DNA activates immune cells remains unclear. Here we show that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9. TLR9-deficient (TLR9-/-) mice did not show any response to CpG DNA, including proliferation of splenocytes, inflammatory cytokine production from macrophages and maturation of dendritic cells. TLR9-/- mice showed resistance to the lethal effect of CpG DNA without any elevation of serum pro-inflammatory cytokine levels. The in vivo CpG-DNA-mediated T-helper type-1 response was also abolished in TLR9-/- mice. Thus, vertebrate immune systems appear to have evolved a specific Toll-like receptor that distinguishes bacterial DNA from self-DNA.  相似文献   

8.
The mechanism of replication of the simian virus 40 (SV40) genome closely resembles that of cellular chromosomes, thereby providing an excellent model system for examining the enzymatic requirements for DNA replication. Only one viral gene product, the large tumour antigen (large-T antigen), is required for viral replication, so the majority of replication enzymes must be cellular. Indeed, a number of enzymatic activities associated with replication and the S phase of the cell cycle are induced upon SV40 infection. Cell-free extracts derived from human cells, when supplemented with immunopurified SV40 large-T antigen support efficient replication of plasmids that contain the SV40 origin of DNA replication. Using this system, a cellular protein of relative molecular mass 36,000 (Mr = 36K) that is required for the elongation stage of SV40 DNA replication in vitro has been purified and identified as a known cell-cycle regulated protein, alternatively called the proliferating cell nuclear antigen (PCNA) or cyclin. It was noticed that, in its physical characteristics, PCNA closely resembles a protein that regulates the activity of calf thymus DNA polymerase-delta. Here we show that PCNA and the polymerase-delta auxiliary protein have similar electrophoretic behaviour and are both recognized by anti-PCNA human autoantibodies. More importantly, both proteins are functionally equivalent; they stimulate SV40 DNA replication in vitro and increase the processivity of calf thymus DNA polymerase-delta. These results implicate a novel animal cell DNA polymerase, DNA polymerase-delta, in the elongation stage of replicative DNA synthesis in vitro.  相似文献   

9.
10.
Qian L  Winfree E  Bruck J 《Nature》2011,475(7356):368-372
The impressive capabilities of the mammalian brain--ranging from perception, pattern recognition and memory formation to decision making and motor activity control--have inspired their re-creation in a wide range of artificial intelligence systems for applications such as face recognition, anomaly detection, medical diagnosis and robotic vehicle control. Yet before neuron-based brains evolved, complex biomolecular circuits provided individual cells with the 'intelligent' behaviour required for survival. However, the study of how molecules can 'think' has not produced an equal variety of computational models and applications of artificial chemical systems. Although biomolecular systems have been hypothesized to carry out neural-network-like computations in vivo and the synthesis of artificial chemical analogues has been proposed theoretically, experimental work has so far fallen short of fully implementing even a single neuron. Here, building on the richness of DNA computing and strand displacement circuitry, we show how molecular systems can exhibit autonomous brain-like behaviours. Using a simple DNA gate architecture that allows experimental scale-up of multilayer digital circuits, we systematically transform arbitrary linear threshold circuits (an artificial neural network model) into DNA strand displacement cascades that function as small neural networks. Our approach even allows us to implement a Hopfield associative memory with four fully connected artificial neurons that, after training in silico, remembers four single-stranded DNA patterns and recalls the most similar one when presented with an incomplete pattern. Our results suggest that DNA strand displacement cascades could be used to endow autonomous chemical systems with the capability of recognizing patterns of molecular events, making decisions and responding to the environment.  相似文献   

11.
核糖核苷酸还原酶研究   总被引:2,自引:0,他引:2  
核糖核苷酸还原酶广泛存在于各种生物中,是生物体内唯一的催化4种核糖核苷酸还原、生成相应的脱氧核糖核苷酸的酶。该酶是DNA合成和修复的关键酶和限速酶,对细胞的增殖和分化起着调控作用。不同生物中的RR根据其结合的金属辅助因子不同而分类。虽然不同类型RR之间的氨基酸序列相似性很低,但它们有十分相似的三级结构的活性中心和相同的催化功能。RR分子中包含2个变构位点,即酶活性中心和底物特异结合位点。活性中心通过生物有机自由基的作用催化核糖核苷酸还原;底物特异结合位点通过变构作用调控4种dNTPs在细胞内的平衡。因此,该酶不仅是研究DNA合成与修复、细胞增殖与分化及癌症的治疗与抗癌药物开发的重要靶点,同时也是研究酶的结构与功能以及酶的催化机理等的重要工具。本文总结了该酶的种类与分布、结构特征、催化机理及作为抗癌药物开发靶点等方面的研究进展。  相似文献   

12.
Homologous recombination is a ubiquitous process with key functions in meiotic and vegetative cells for the repair of DNA breaks. It is initiated by the formation of single-stranded DNA on which recombination proteins bind to form a nucleoprotein filament that is active in searching for homology, in the formation of joint molecules and in the exchange of DNA strands. This process contributes to genome stability but it is also potentially dangerous to cells if intermediates are formed that cannot be processed normally and thus are toxic or generate genomic rearrangements. Cells must therefore have developed strategies to survey recombination and to prevent the occurrence of such deleterious events. In Saccharomyces cerevisiae, genetic data have shown that the Srs2 helicase negatively modulates recombination, and later experiments suggested that it reverses intermediate recombination structures. Here we show that DNA strand exchange mediated in vitro by Rad51 is inhibited by Srs2, and that Srs2 disrupts Rad51 filaments formed on single-stranded DNA. These data provide an explanation for the anti-recombinogenic role of Srs2 in vivo and highlight a previously unknown mechanism for recombination control.  相似文献   

13.
R D Kolodner  K K Tewari 《Nature》1975,256(5520):708-711
The chloroplast DNA (ctDNA) from pea and corn plants contains both Cairns type and rolling circle replicative intermediates. Denaturation mapping studies with pea ctDNA molecules have shown that the rolling circles initiate replication at or near the site where the Cairns replicative intermediates terminate replication. These results suggest that the rolling circles are initiated by a Cairns round of replication. A model for the replication of the chloroplast DNA is based on these results.  相似文献   

14.
Cell-free extracts prepared from human 293 cells, supplemented with purified SV40 large-T antigen, support replication of plasmids containing the SV40 origin of DNA replication. A cellular protein (Mr approximately 36,000) that is required for efficient SV40 DNA synthesis in vitro has been purified from these extracts. This protein is recognized by human autoantibodies and is identified as the cell-cycle regulated protein known as proliferating cell nuclear antigen (PCNA) or cyclin.  相似文献   

15.
The DNA replication checkpoint response stabilizes stalled replication forks   总被引:62,自引:0,他引:62  
In response to DNA damage and blocks to replication, eukaryotes activate the checkpoint pathways that prevent genomic instability and cancer by coordinating cell cycle progression with DNA repair. In budding yeast, the checkpoint response requires the Mec1-dependent activation of the Rad53 protein kinase. Active Rad53 slows DNA synthesis when DNA is damaged and prevents firing of late origins of replication. Further, rad53 mutants are unable to recover from a replication block. Mec1 and Rad53 also modulate the phosphorylation state of different DNA replication and repair enzymes. Little is known of the mechanisms by which checkpoint pathways interact with the replication apparatus when DNA is damaged or replication blocked. We used the two-dimensional gel technique to examine replication intermediates in response to hydroxyurea-induced replication blocks. Here we show that hydroxyurea-treated rad53 mutants accumulate unusual DNA structures at replication forks. The persistence of these abnormal molecules during recovery from the hydroxyurea block correlates with the inability to dephosphorylate Rad53. Further, Rad53 is required to properly maintain stable replication forks during the block. We propose that Rad53 prevents collapse of the fork when replication pauses.  相似文献   

16.
Y Kuchino  F Mori  H Kasai  H Inoue  S Iwai  K Miura  E Ohtsuka  S Nishimura 《Nature》1987,327(6117):77-79
It has been shown previously that deoxyguanosine residues in DNA are hydroxylated at the C-8 position both in vitro and in vivo to produce 8-hydroxydeoxyguanosine (8-OH-dG) by various agents that produce oxygen radicals such as reducing reagents-O2, metal ions-O2, polyphenol-H2O2-Fe3+, asbestos-H2O2 or ionizing radiation. These agents are mostly either mutagenic or carcinogenic; therefore, the formation of 8-OH-dG can also be considered a likely cause of mutation or carcinogenesis by oxygen radicals. It is of interest to know whether the 8-OH-dG residue in DNA is misread during DNA replication. To answer this question, we have examined the effect of the 8-OH-dG residue in DNA on the fidelity of DNA replication using a DNA synthesis system in vitro with Escherichia coli DNA polymerase I (Klenow fragment). The synthetic oligodeoxynucleotides, with or without an 8-OH-dG residue in a specified position, were chemically synthesized and used as templates for DNA synthesis under the conditions of the dideoxy chain termination sequencing method. Surprisingly, in addition to misreading of the 8-OH-dG residue itself, pyrimidines next to the 8-OH-dG residue (G has not yet been tested) were also misread.  相似文献   

17.
Dehydration or desiccation is one of the most frequent and severe challenges to living cells. The bacterium Deinococcus radiodurans is the best known extremophile among the few organisms that can survive extremely high exposures to desiccation and ionizing radiation, which shatter its genome into hundreds of short DNA fragments. Remarkably, these fragments are readily reassembled into a functional 3.28-megabase genome. Here we describe the relevant two-stage DNA repair process, which involves a previously unknown molecular mechanism for fragment reassembly called 'extended synthesis-dependent strand annealing' (ESDSA), followed and completed by crossovers. At least two genome copies and random DNA breakage are requirements for effective ESDSA. In ESDSA, chromosomal fragments with overlapping homologies are used both as primers and as templates for massive synthesis of complementary single strands, as occurs in a single-round multiplex polymerase chain reaction. This synthesis depends on DNA polymerase I and incorporates more nucleotides than does normal replication in intact cells. Newly synthesized complementary single-stranded extensions become 'sticky ends' that anneal with high precision, joining together contiguous DNA fragments into long, linear, double-stranded intermediates. These intermediates require RecA-dependent crossovers to mature into circular chromosomes that comprise double-stranded patchworks of numerous DNA blocks synthesized before radiation, connected by DNA blocks synthesized after radiation.  相似文献   

18.
Murayama Y  Kurokawa Y  Mayanagi K  Iwasaki H 《Nature》2008,451(7181):1018-1021
Holliday junctions (HJs) are key intermediates in homologous recombination and are especially important for the production of crossover recombinants. Bacterial RecA family proteins promote the formation and branch migration of HJs in vitro by catalysing a reciprocal DNA-strand exchange reaction between two duplex DNA molecules, one of which contains a single-stranded DNA region that is essential for initial nucleoprotein filament formation. This activity has been reported only for prokaryotic RecA family recombinases, although eukaryotic homologues are also essential for HJ production in vivo. Here we show that fission yeast (Rhp51) and human (hRad51) RecA homologues promote duplex-duplex DNA-strand exchange in vitro. As with RecA, a HJ is formed between the two duplex DNA molecules, and reciprocal strand exchange proceeds through branch migration of the HJ. In contrast to RecA, however, strand exchange mediated by eukaryotic recombinases proceeds in the 3'-->5' direction relative to the single-stranded DNA region of the substrate DNA. The opposite polarity of Rhp51 makes it especially suitable for the repair of DNA double-strand breaks, whose repair is initiated at the processed ends of breaks that have protruding 3' termini.  相似文献   

19.
Maiorano D  Moreau J  Méchali M 《Nature》2000,404(6778):622-625
In eukaryotic cells, chromosomal DNA replication begins with the formation of pre-replication complexes at replication origins. Formation and maintenance of pre-replication complexes is dependent upon CDC6 (ref. 1), a protein which allows assembly of MCM2-7 proteins, which are putative replicative helicases. The functional assembly of MCM proteins into chromatin corresponds to replication licensing. Removal of these proteins from chromatin in S phase is crucial in origins firing regulation. We have identified a protein that is required for the assembly of pre-replication complexes, in a screen for maternally expressed genes in Xenopus. This factor (XCDT1) is a relative of fission yeast cdt1, a protein proposed to function in DNA replication, and is the first to be identified in vertebrates. Here we show, using Xenopus in vitro systems, that XCDT1 is required for chromosomal DNA replication. XCDT1 associates with pre-replicative chromatin in a manner dependent on ORC protein and is removed from chromatin at the time of initiation of DNA synthesis. Immunodepletion and reconstitution experiments show that XCDT1 is required to load MCM2-7 proteins onto pre-replicative chromatin. These findings indicate that XCDT1 is an essential component of the system that regulates origins firing during S phase.  相似文献   

20.
T Tsurimoto  T Melendy  B Stillman 《Nature》1990,346(6284):534-539
Enzymatic synthesis of DNA from the simian virus 40 origin of DNA replication has been reconstituted in vitro with eight purified components. DNA polymerase alpha-primase complex first initiates DNA synthesis at the replication origin and continues as the lagging strand polymerase. Subsequently, the DNA polymerase delta complex initiates replication on the leading strand template. Some prokaryotic DNA polymerase complexes can replace the eukaryotic polymerase delta complex. A model for polymerase switching during initiation of DNA replication is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号