首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several families with an early-onset form of familial Alzheimer's disease have been found to harbour mutations at a specific codon (717) of the gene for the beta-amyloid precursor protein (APP) on chromosome 21. We now report, a novel base mutation in the same exon of the APP gene which co-segregates in one family with presenile dementia and cerebral haemorrhage due to cerebral amyloid angiopathy. The mutation results in the substitution of alanine into glycine at codon 692. These results suggest that the clinically distinct entities, presenile dementia and cerebral amyloid angiopathy, can be caused by the same mutation in the APP gene.  相似文献   

2.
Perlman syndrome is a congenital overgrowth syndrome inherited in an autosomal recessive manner that is associated with Wilms tumor susceptibility. We mapped a previously unknown susceptibility locus to 2q37.1 and identified germline mutations in DIS3L2, a homolog of the Schizosaccharomyces pombe dis3 gene, in individuals with Perlman syndrome. Yeast dis3 mutant strains have mitotic abnormalities. Yeast Dis3 and its human homologs, DIS3 and DIS3L1, have exoribonuclease activity and bind to the core RNA exosome complex. DIS3L2 has a different intracellular localization and lacks the PIN domain found in DIS3 and DIS3L1; nevertheless, we show that DIS3L2 has exonuclease activity. DIS3L2 inactivation was associated with mitotic abnormalities and altered expression of mitotic checkpoint proteins. DIS3L2 overexpression suppressed the growth of human cancer cell lines, and knockdown enhanced the growth of these cells. We also detected evidence of DIS3L2 mutations in sporadic Wilms tumor. These observations suggest that DIS3L2 has a critical role in RNA metabolism and is essential for the regulation of cell growth and division.  相似文献   

3.
Aicardi-Goutières syndrome (AGS) presents as a severe neurological brain disease and is a genetic mimic of the sequelae of transplacentally acquired viral infection. Evidence exists for a perturbation of innate immunity as a primary pathogenic event in the disease phenotype. Here, we show that TREX1, encoding the major mammalian 3' --> 5' DNA exonuclease, is the AGS1 gene, and AGS-causing mutations result in abrogation of TREX1 enzyme activity. Similar loss of function in the Trex1(-/-) mouse leads to an inflammatory phenotype. Our findings suggest an unanticipated role for TREX1 in processing or clearing anomalous DNA structures, failure of which results in the triggering of an abnormal innate immune response.  相似文献   

4.
One of the most notable trends in mammalian evolution is the massive increase in size of the cerebral cortex, especially in primates. Humans with autosomal recessive primary microcephaly (MCPH) show a small but otherwise grossly normal cerebral cortex associated with mild to moderate mental retardation. Genes linked to this condition offer potential insights into the development and evolution of the cerebral cortex. Here we show that the most common cause of MCPH is homozygous mutation of ASPM, the human ortholog of the Drosophila melanogaster abnormal spindle gene (asp), which is essential for normal mitotic spindle function in embryonic neuroblasts. The mouse gene Aspm is expressed specifically in the primary sites of prenatal cerebral cortical neurogenesis. Notably, the predicted ASPM proteins encode systematically larger numbers of repeated 'IQ' domains between flies, mice and humans, with the predominant difference between Aspm and ASPM being a single large insertion coding for IQ domains. Our results and evolutionary considerations suggest that brain size is controlled in part through modulation of mitotic spindle activity in neuronal progenitor cells.  相似文献   

5.
Vertebral and metaphyseal dysplasia, spasticity with cerebral calcifications, and strong predisposition to autoimmune diseases are the hallmarks of the genetic disorder spondyloenchondrodysplasia. We mapped a locus in five consanguineous families to chromosome 19p13 and identified mutations in ACP5, which encodes tartrate-resistant phosphatase (TRAP), in 14 affected individuals and showed that these mutations abolish enzyme function in the serum and cells of affected individuals. Phosphorylated osteopontin, a protein involved in bone reabsorption and in immune regulation, accumulates in serum, urine and cells cultured from TRAP-deficient individuals. Case-derived dendritic cells exhibit an altered cytokine profile and are more potent than matched control cells in stimulating allogeneic T cell proliferation in mixed lymphocyte reactions. These findings shed new light on the role of osteopontin and its regulation by TRAP in the pathogenesis of common autoimmune disorders.  相似文献   

6.
Cerebral infarction is the most common type of stroke and often causes long-term disability. To investigate the genetic contribution to cerebral infarction, we conducted a case-control study using 52,608 gene-based tag SNPs selected from the JSNP database. Here we report that a nonsynonymous SNP in a member of protein kinase C (PKC) family, PRKCH, was significantly associated with lacunar infarction in two independent Japanese samples (P = 5.1 x 10(-7), crude odds ratio of 1.40). This SNP is likely to affect PKC activity. Furthermore, a 14-year follow-up cohort study in Hisayama (Fukuoka, Japan) supported involvement of this SNP in the development of cerebral infarction (P = 0.03, age- and sex-adjusted hazard ratio of 2.83). We also found that PKCeta was expressed mainly in vascular endothelial cells and foamy macrophages in human atherosclerotic lesions, and its expression increased as the lesion type progressed. Our results support a role for PRKCH in the pathogenesis of cerebral infarction.  相似文献   

7.
Normal development of the cerebral cortex requires long-range migration of cortical neurons from proliferative regions deep in the brain. Lissencephaly ("smooth brain," from "lissos," meaning smooth, and "encephalos," meaning brain) is a severe developmental disorder in which neuronal migration is impaired, leading to a thickened cerebral cortex whose normally folded contour is simplified and smooth. Two identified lissencephaly genes do not account for all known cases, and additional lissencephaly syndromes have been described. An autosomal recessive form of lissencephaly (LCH) associated with severe abnormalities of the cerebellum, hippocampus and brainstem maps to chromosome 7q22, and is associated with two independent mutations in the human gene encoding reelin (RELN). The mutations disrupt splicing of RELN cDNA, resulting in low or undetectable amounts of reelin protein. LCH parallels the reeler mouse mutant (Reln(rl)), in which Reln mutations cause cerebellar hypoplasia, abnormal cerebral cortical neuronal migration and abnormal axonal connectivity. RELN encodes a large (388 kD) secreted protein that acts on migrating cortical neurons by binding to the very low density lipoprotein receptor (VLDLR), the apolipoprotein E receptor 2 (ApoER2; refs 9-11 ), alpha3beta1 integrin and protocadherins. Although reelin was previously thought to function exclusively in brain, some humans with RELN mutations show abnormal neuromuscular connectivity and congenital lymphoedema, suggesting previously unsuspected functions for reelin in and outside of the brain.  相似文献   

8.
Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in prenatal human brain growth without alteration of the cerebral architecture and is caused by biallelic mutations in genes coding for a subset of centrosomal proteins. Although at least three of these proteins have been implicated in centrosome duplication, the nature of the centrosome dysfunction that underlies the neurodevelopmental defect in MCPH is unclear. Here we report a homozygous MCPH-causing mutation in human CEP63. CEP63 forms a complex with another MCPH protein, CEP152, a conserved centrosome duplication factor. Together, these two proteins are essential for maintaining normal centrosome numbers in cells. Using super-resolution microscopy, we found that CEP63 and CEP152 co-localize in a discrete ring around the proximal end of the parental centriole, a pattern specifically disrupted in CEP63-deficient cells derived from patients with MCPH. This work suggests that the CEP152-CEP63 ring-like structure ensures normal neurodevelopment and that its impairment particularly affects human cerebral cortex growth.  相似文献   

9.
Genes associated with human microcephaly, a condition characterized by a small brain, include critical regulators of proliferation, cell fate and DNA repair. We describe a syndrome of congenital microcephaly and diverse defects in cerebral cortical architecture. Genome-wide linkage analysis in two families identified a 7.5-Mb locus on chromosome 19q13.12 containing 148 genes. Targeted high throughput sequence analysis of linked genes in each family yielded > 4,000 DNA variants and implicated a single gene, WDR62, as harboring potentially deleterious changes. We subsequently identified additional WDR62 mutations in four other families. Magnetic resonance imaging and postmortem brain analysis supports important roles for WDR62 in the proliferation and migration of neuronal precursors. WDR62 is a WD40 repeat-containing protein expressed in neuronal precursors as well as in postmitotic neurons in the developing brain and localizes to the spindle poles of dividing cells. The diverse phenotypes of WDR62 suggest it has central roles in many aspects of cerebral cortical development.  相似文献   

10.
The hyh (hydrocephalus with hop gait) mouse shows a markedly small cerebral cortex at birth and dies postnatally from progressive enlargement of the ventricular system. Here we show that the small hyh cortex reflects altered cell fate. Neural progenitor cells withdraw prematurely from the cell cycle, producing more early-born, deep-layer cerebral cortical neurons but depleting the cortical progenitor pool, such that late-born, upper-layer cortical neurons are underproduced, creating a small cortex. hyh mice carry a hypomorphic missense mutation in the gene Napa encoding soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein alpha (alpha Snap), involved in SNAP receptor (SNARE)-mediated vesicle fusion in many cellular contexts. A targeted null Napa mutation is embryonically lethal. Altered neural cell fate is accompanied by abnormal localization of many apical proteins implicated in regulation of neural cell fate, including E-cadherin, beta-catenin, atypical protein kinase C (aPKC) and INADL (inactivation-no-afterpotential D-like, also known as protein associated with Lin7, or Pals1). Apical localization of the SNARE Vamp7 is also disrupted. Thus, alpha Snap is essential for apical protein localization and cell fate determination in neuroepithelial cells.  相似文献   

11.
The CST3 Thr25 allele of CST3, which encodes cystatin C, leads to reduced cystatin C secretion and conveys susceptibility to Alzheimer's disease. Here we show that overexpression of human cystatin C in brains of APP-transgenic mice reduces cerebral amyloid-beta deposition and that cystatin C binds amyloid-beta and inhibits its fibril formation. Our results suggest that cystatin C concentrations modulate cerebral amyloidosis risk and provide an opportunity for genetic risk assessment and therapeutic interventions.  相似文献   

12.
We report duplication of the APP locus on chromosome 21 in five families with autosomal dominant early-onset Alzheimer disease (ADEOAD) and cerebral amyloid angiopathy (CAA). Among these families, the duplicated segments had a minimal size ranging from 0.58 to 6.37 Mb. Brains from individuals with APP duplication showed abundant parenchymal and vascular deposits of amyloid-beta peptides. Duplication of the APP locus, resulting in accumulation of amyloid-beta peptides, causes ADEOAD with CAA.  相似文献   

13.
Disruption of human neural precursor proliferation can give rise to a small brain (microcephaly), and failure of neurons to migrate properly can lead to an abnormal arrest of cerebral cortical neurons in proliferative zones near the lateral ventricles (periventricular heterotopia). Here we show that an autosomal recessive condition characterized by microcephaly and periventricular heterotopia maps to chromosome 20 and is caused by mutations in the gene ADP-ribosylation factor guanine nucleotide-exchange factor-2 (ARFGEF2). By northern-blot analysis, we found that mouse Arfgef2 mRNA levels are highest during embryonic periods of ongoing neuronal proliferation and migration, and by in situ hybridization, we found that the mRNA is widely distributed throughout the embryonic central nervous system (CNS). ARFGEF2 encodes the large (>200 kDa) brefeldin A (BFA)-inhibited GEF2 protein (BIG2), which is required for vesicle and membrane trafficking from the trans-Golgi network (TGN). Inhibition of BIG2 by BFA, or by a dominant negative ARFGEF2 cDNA, decreases cell proliferation in vitro, suggesting a cell-autonomous regulation of neural expansion. Inhibition of BIG2 also disturbed the intracellular localization of such molecules as E-cadherin and beta-catenin by preventing their transport from the Golgi apparatus to the cell surface. Our findings show that vesicle trafficking is an important regulator of proliferation and migration during human cerebral cortical development.  相似文献   

14.
The biological basis for regional and inter-species differences in cerebral cortical morphology is poorly understood. We focused on consanguineous Turkish families with a single affected member with complex bilateral occipital cortical gyration abnormalities. By using whole-exome sequencing, we initially identified a homozygous 2-bp deletion in LAMC3, the laminin γ3 gene, leading to an immediate premature termination codon. In two other affected individuals with nearly identical phenotypes, we identified a homozygous nonsense mutation and a compound heterozygous mutation. In human but not mouse fetal brain, LAMC3 is enriched in postmitotic cortical plate neurons, localizing primarily to the somatodendritic compartment. LAMC3 expression peaks between late gestation and late infancy, paralleling the expression of molecules that are important in dendritogenesis and synapse formation. The discovery of the molecular basis of this unusual occipital malformation furthers our understanding of the complex biology underlying the formation of cortical gyrations.  相似文献   

15.
16.
Using transgenic mice expressing human cystatin C (encoded by CST3), we show that cystatin C binds soluble amyloid-beta peptide and inhibits cerebral amyloid deposition in amyloid-beta precursor protein (APP) transgenic mice. Cystatin C expression twice that of the endogenous mouse cystatin C was sufficient to substantially diminish amyloid-beta deposition. Thus, cystatin C has a protective role in Alzheimer's disease pathogenesis, and modulation of cystatin C concentrations may have therapeutic implications for the disease.  相似文献   

17.
Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) is a common and clinically distinct form of familial spastic paraplegia that is linked to the SPG11 locus on chromosome 15 in most affected families. We analyzed 12 ARHSP-TCC families, refined the SPG11 candidate interval and identified ten mutations in a previously unidentified gene expressed ubiquitously in the nervous system but most prominently in the cerebellum, cerebral cortex, hippocampus and pineal gland. The mutations were either nonsense or insertions and deletions leading to a frameshift, suggesting a loss-of-function mechanism. The identification of the function of the gene will provide insight into the mechanisms leading to the degeneration of the corticospinal tract and other brain structures in this frequent form of ARHSP.  相似文献   

18.
Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder.  相似文献   

19.
Hypertonia, which results from motor pathway defects in the central nervous system (CNS), is observed in numerous neurological conditions, including cerebral palsy, stroke, spinal cord injury, stiff-person syndrome, spastic paraplegia, dystonia and Parkinson disease. Mice with mutation in the hypertonic (hyrt) gene exhibit severe hypertonia as their primary symptom. Here we show that hyrt mutant mice have much lower levels of gamma-aminobutyric acid type A (GABA(A)) receptors in their CNS, particularly the lower motor neurons, than do wild-type mice, indicating that the hypertonicity of the mutants is likely to be caused by deficits in GABA-mediated motor neuron inhibition. We cloned the responsible gene, trafficking protein, kinesin binding 1 (Trak1), and showed that its protein product interacts with GABA(A) receptors. Our data implicate Trak1 as a crucial regulator of GABA(A) receptor homeostasis and underscore the importance of hyrt mice as a model for studying the molecular etiology of hypertonia associated with human neurological diseases.  相似文献   

20.
De novo somatic mutations in focal areas are well documented in diseases such as neoplasia but are rarely reported in malformation of the developing brain. Hemimegalencephaly (HME) is characterized by overgrowth of either one of the two cerebral hemispheres. The molecular etiology of HME remains a mystery. The intractable epilepsy that is associated with HME can be relieved by the surgical treatment hemispherectomy, allowing sampling of diseased tissue. Exome sequencing and mass spectrometry analysis in paired brain-blood samples from individuals with HME (n = 20 cases) identified de novo somatic mutations in 30% of affected individuals in the PIK3CA, AKT3 and MTOR genes. A recurrent PIK3CA c.1633G>A mutation was found in four separate cases. Identified mutations were present in 8-40% of sequenced alleles in various brain regions and were associated with increased neuronal S6 protein phosphorylation in the brains of affected individuals, indicating aberrant activation of mammalian target of rapamycin (mTOR) signaling. Thus HME is probably a genetically mosaic disease caused by gain of function in phosphatidylinositol 3-kinase (PI3K)-AKT3-mTOR signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号