首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
低温度系数高电源抑制比带隙基准源的设计   总被引:1,自引:0,他引:1  
基于SMIC 0.18 μm CMOS工艺,设计了一种适用于数模或模数转换等模数混合电路的低温度系数、高电源抑制比的带隙基准电压源.针对传统带隙基准源工作电压的限制,设计采用电流模结构使之可工作于低电源电压,且输出基准电压可调;采用共源共栅结构(cascode)作电流源,提高电路的电源抑制比(PSRR);采用了具有高增益高输出摆幅的常见的两级运放.Cadence仿真结果表明:在1.8V电源电压下,输出基准电压约为534 mV,温度在-25~100℃范围内变化时,温度系数为4.8 ppm/℃,低频电源抑制比为-84 dB,在1.6~2.0 V电源电压变化范围内,电压调整率为0.15 mV/V.  相似文献   

2.
针对传统带隙基准电源电压高、功耗高和面积大的问题,提出了一种超低功耗的低电压全金属氧化物半导体(MOS)基准电压源。该基准源通过电压钳制使MOS管工作在深亚阈值区,利用亚阈值区MOS管的阈值电压差补偿热电势的温度特性,同时采用负反馈提高了电压源的线性度与电源抑制比。整个电压源电路采用SMIC 0.18μm互补金属氧化物半导体工艺设计,仿真结果表明:基准电压源的电源电压范围可达0.5~3.3V,线性调整率为0.428%V-1,功耗最低仅为0.41nW;在1.8V电源电压、-40~125℃温度范围内,温度系数为4.53×10-6℃-1,输出电压为230mV;1kHz下电源抑制比为-60dB,芯片版图面积为625μm2。该基准电压源可满足植入式医疗、可穿戴设备和物联网等系统对芯片的低压低功耗要求。  相似文献   

3.
本文设计了一种低电压、低功耗、高电源抑制比CMOS基准电压源。该电路基于工作在亚阈值区的MOS管,利用PTAT电流源与微功耗运算放大器构成负反馈系统以提高电源电压抑制比。SPICE仿真显示,在1V的电源电压下,输出基准电压为609mV,温度系数为72ppm/℃,静态工作电流仅为1.23μA。在1-5V的电源电压变化范围内,电压灵敏度为130μV/V,低频电源电压抑制比为74dB。该电路为全CMOS电路,不需要用到寄生PNP三极管,具有良好的CMOS工艺兼容性。  相似文献   

4.
提出了一种新型的高性能带隙基准电压源,该基准电压源采用共源共栅电流镜提供偏置电流,减少沟道长度调制效应带来的误差,并增加1个简单的减法电路,使得偏置电流更好地跟随电源电压变化,从而提高电路的电源抑制比。整体电路使用CSMC 0.6μm CMOS工艺,采用Hspice进行仿真。仿真结果表明,在-50~ 100℃温度范围内温度系数为2.93×10-5℃,电源抑制比达到-84.2 dB,电源电压在3.5~6.5 V之间均可实现2.5±0.0012 V的输出,是一种有效的基准电压实现方法。  相似文献   

5.
在传统电流求和模式带隙基准电压源的基础上进行改进,设计了一种简单的三阶曲率补偿带隙基准电压源。该基准源由启动电路、低压高增益两级运算放大器、基准核心电路和高阶曲率补偿电路组成。在低温段,通过PMOS管进行二阶补偿;在高温段,通过PTAT2电流进行三阶补偿。基于CSMC 0.35μm CMOS工艺,采用Cadence软件对设计电路进行仿真分析。结果表明,在-40~125℃温度范围内,5 V电源电压下,基准源输出电压为1.226V,输出电压变化范围为0.51mV,基准源的温度系数为2.5×10-6/℃,低频时的电源抑制比为-67 dB。  相似文献   

6.
文章依据带隙基准电压源的基本原理设计了一种低温漂的带隙基准源,与传统带隙基准相比,所设计的电压源未使用运放。该基准电源电路有较低的温度系数和较高的电源抑制比,此外还增加了启动电路,以保证电路工作点正常。仿真结果表明,低频时电源抑制比可达85 dB,在-20℃~100℃范围内输出变化仅为0.8 mV,温度系数仅为4.968×10-6,常温下输出电压为1.296 V,电源电压范围为3.9~5.5 V。  相似文献   

7.
设计采用双极性结型晶体管产生一个二阶温度补偿电压,并将其与一阶温度补偿电压加权叠加得到一个低温度系数的带隙电压.通过采用增大运放增益和负反馈回路提高电源抑制比.电路基于0.13μm BCD工艺实现,使用Cadence中Spectre环境进行仿真.在工作电源电压为5 V的情况下,温度等于27℃时输出电压为1.209 V,电源电压抑制比为-58 d B@100 Hz,在-40-130℃温度范围内,输出电压变化范围为0.93 mV,平均温度系数为4.51 ppm/℃.  相似文献   

8.
采用GSMC 0.13 μm CMOS工艺设计了一种适合于SOC的低压高精度带隙基准电压源.仿真结果表明.该电路可以在0.9~1.5 V电源电压下工作,输出的基准电压可以稳定在约0.708 V,温度在0~60℃之间时.温度系数不超过44 ppm/K,电源抑制比为66 dB,最大功耗小于0.5 μW.基于GSMC0.13 μmlP8M CMOS工艺几何设计规则实现了其版图.版图面积约为0.2 min×0.15 mm.  相似文献   

9.
采用GSMC 0.13 μm CMOS工艺设计了一种适合于SOC的低压高精度带隙基准电压源.仿真结果表明.该电路可以在0.9~1.5 V电源电压下工作,输出的基准电压可以稳定在约0.708 V,温度在0~60℃之间时.温度系数不超过44 ppm/K,电源抑制比为66 dB,最大功耗小于0.5 μW.基于GSMC0.13 μmlP8M CMOS工艺几何设计规则实现了其版图.版图面积约为0.2 min×0.15 mm.  相似文献   

10.
基于0.18μm BCD工艺,设计了一种新颖的低温漂高电源抑制比(PSRR)的带隙基准源电路。基准核心电路采用自偏置结构,简化了电路的设计。在不显著增加电路功耗与面积的前提下,通过引入预调节电路极大地提高了电路的PSRR。基准源输出采用负反馈结构,进一步提升了PSRR。Hspice软件仿真结果表明:在-40~150℃温度范围变化时,基准输出电压变化为283μV,温度系数仅为1.18×10-6(ppm)/℃;基准的稳定输出电压为1.257 V;电源电压在3~6 V范围变化时,线性调整率为0.082 m V/V;5 V电源电压下,低频时电源电压抑制比为130 d B,在100 k Hz时也能高达65 d B。电路整体功耗为0.065 m W,版图面积为63μm×72μm。  相似文献   

11.
考虑暂态电压稳定的二级电压紧急控制   总被引:1,自引:0,他引:1  
建立暂态电压稳定分析的微分代数方程组,并提出应对暂态电压稳定问题的二级电压紧急控制策略.该紧急控制策略在常规二级电压控制的基础上减小二级电压控制的时间常数,并将系统发生故障后电压失稳最严重的负荷母线的电压偏差引入到二级电压控制的目标函数中,采用有效集法求解紧急二级电压控制的二次规划模型.在PSAT仿真环境下建立含二级电...  相似文献   

12.
整个推导过程都是以现代网络场论中积分形式的两组独立方程组为源,没有依靠线图。文中介绍关联矩阵、独立割集矩阵的概念.据此得到支路电压,分别与割集电压、独立节点电压之间的关系式.推导出割集电压与独立节点电压之间的关系.同时还举出1个验证示例,以说明所得结论的正确性。  相似文献   

13.
探讨以MCS-51单片微型计算机为基础的自动调压装置及在有载调压变压器上的应用。给出为实现该装置主要功能而配置的硬件系统和主要软件的设计,并提出旨在电力系统中应用这种新型装置的几点看法。  相似文献   

14.
一种失调电压补偿电容比例型带隙基准源设计   总被引:1,自引:0,他引:1  
设计了一种全新的电容比例型带隙基准源,用电容比例取代了通常的电阻比例,有效地减小了电路设计误差以及电路的功耗,理论失调电压可获补偿.电路采用Cadence Spectre软件仿真,Charter 0.35μm CMOS工艺库实现.仿真结果表明,该电路具有极低的电路功耗(8μW),其直流电源抑制比PSRR达到50 dB,温度系数为3×10-5V/℃.  相似文献   

15.
电压的测量     
分析了各种电压表的结构与性能特点,提出了一种提高精确度和灵敏度的新方案。  相似文献   

16.
超高压线路潜供电弧电压的频率特性分析   总被引:3,自引:0,他引:3  
针对潜供电弧状态对超高压线路单相自动重合闸影响的问题,提出了一种基于故障相电压谐波情况的电弧状态判断方法.该方法在分析了一次及二次电弧的特性及不同补偿度下电弧熄灭后系统振荡特性的基础上,通过引入总谐波畸变(THD)来反映故障相电压谐波含量的变化.对不同补偿度的系统运用EMTP进行了仿真,结果表明电弧熄灭后,故障点电压的THD值将显著降低,为利用故障点电压的谐波情况来判断电弧状态提供了依据.  相似文献   

17.
倍压整流适用于电压高、电流小的场合,常用于电缆的耐压试验。详细介绍了如何用倍压整流方法对电缆进行直流耐压试验及泄漏电流的测量,并对试验结果进行了判断。  相似文献   

18.
本文提出了高压低饱和压降GTR的最佳设计方法。分析表明,高压低饱和压降晶体管采用集电区穿通性设计比非穿通性设计有利。并论证了穿通因子(N=We/Xm)的最佳值为0.7左右。在此范围内,在保证高击穿电压的条件下,可使他和压降UCER较低,发射极面积Ae最小,大注入下的电流增益大。  相似文献   

19.
根据线路的允许电压损失和导线的允许电流,得出了不同截面导线所允许的输电距离的估算方法,并按此方法计算了不同截面常用导线的允许输电距离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号