共查询到20条相似文献,搜索用时 73 毫秒
1.
2.
以单断面的交通流量为研究对象,采用动态Elman神经网络进行短时交通流量的预测,提出一种基于GA-Elman神经网络的交通流短时预测方法.该方法通过遗传算法优化Elman神经网络的权值和阈值,克服了Elman神经网络易陷入局部最小的缺陷,同时提高了Elman神经网络的泛化能力和预测精度.实验仿真表明,本文方法可用于城市快速路上预测实时交通流量,预测效果优于Elman、GA-BP预测模型. 相似文献
3.
4.
为了提高BP神经网络预测模型对短时交通流的预测准确性,文章提出了一种基于改进遗传算法优化BP神经网络的短时交通流预测方法。由于模拟退火算法具有较强的局部搜索能力,能够在搜索过程中避免陷入局部最优解,因此引入模拟退火算法中的Metropolis接受准则来增加遗传算法的局部搜索能力,避免了遗传算法过早收敛和陷入局部最优解。通过改进的遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解。仿真结果表明,该方法对短时交通流预测具有较好的预测精确性。 相似文献
5.
为提高径向基(RBF)神经网络预测模型对交通流预测的准确性,提出了一种基于遗传算法优化径向基神经网络的交通流预测方法。利用遗传算法优化径向基神经网络的权值和阈值,然后训练RBF神经网络预测模型以求得最优解,并将该预测方法与RBF神经网络和BP神经网络的预测结果进行对比。仿真结果表明,该方法对交通流具有较好的非线性拟合能力,预测精度高于径向基神经网络和BP神经网络。 相似文献
6.
本文首次将诱导有序加权平均(IOWA)算子应用到短时交通流预测中,建立了以整体预测误差平方和最小为目标的组合预测模型。在分析短时交通流预测模型的基础上,本文选取了指数平滑法、季节自回归求和移动平均模型(SARIMA)、BP神经网络模型对短时交通流进行预测,再用IOWA算子将这三种模型进行组合预测。最后进行实例验证,通过MAE、MSE和MAPE三项指标比较分析四种模型的预测效果。结果证明,IOWA算子组合预测模型明显优于其他的预测模型,有效地提高了短时交通流的预测精度。 相似文献
7.
短时交通流预测方法综述 总被引:1,自引:0,他引:1
短时交通流预测是道路交通控制系统、交通流诱导系统等领域需要解决的首要问题之一.因此,如何能够实时准确的预测交通流量成为了交通管理与控制是否能够有效实现的关键问题. 相似文献
8.
摘要: 针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的变量选择能力,在复杂路网多断面中选出相关性较高的断面;结合神经网络(NN)的非线性特性,提出了Lasso NN组合模型.结果表明:Lasso NN模型在路网交叉口对未来15 min交通流数据预测的误差率低于9.2%;在非交叉口的误差率低于6.7%,总体优于各自单独使用得出的结果. 相似文献
9.
针对现有的交通流量预测模型缺乏对交通数据动态时空相关性建模能力的问题,提出一种新的基于深度学习的动态时空图卷积网络(DSTGCN)模型,该模型无需给出道路网络信息,从交通数据中即可建模时空相关性.动态时空图卷积层包含2个主要部分:(1)动态邻接矩阵生成模块:使用时间自相关机制与空间注意力机制捕捉交通数据中的动态时空相关性;(2)时空图卷积:使用图卷积和标准二维卷积对信息进行高效聚合.DSTGCN通过堆叠动态时空图卷积层,能够捕捉不同时间级别的时空依赖关系.文章提出的方法在美国加利福尼亚州高速公路流量公开数据集上进行了实验,结果表明:所提出的DSTGCN模型在各项评价指标中均优于现有的基准方法.在PeMSD04数据集上,与当前较新的GeoMAN和ASTGCN模型相比,MAE分别降低了4.00和2.16,验证了所提模型在交通流预测中的有效性. 相似文献
10.
11.
基于神经网络的交通流的预测 总被引:1,自引:0,他引:1
贾丹 《渤海大学学报(自然科学版)》2002,23(3):27-29
在简要介绍智能系统中交通流的实时检测设备的基础上 ,为满足交通流诱导系统的理论需要 ,建立了实时交通流量神经网络预测模型。该模型为交通流诱导系统提供了预测交通状况的一种很好的方法 相似文献
12.
13.
《四川理工学院学报(自然科学版)》2015,(6):52-57
针对城市短时交通流量具有复杂性和非线性等特点,提出了基于人工蜂群算法(ABC)优化小波神经网络对短时交通流量预测分析模型。以小波神经网络(WNN)为基础,将以前城市采集的交通流量作为预测样本,通过人工蜂群算法优化WNN网络结构、权值和阈值,并建立城市短时交通流量预测数学模型。实验仿真表明,所提出的算法预测结果比仅使用WNN算法以及粒子群优化BP神经网络算法效率更高,是一种有效可靠的交通流量预测方法。 相似文献
14.
网络流量数据序列具有混沌特性.相空间重构后,采用一种改进黑洞算法优化回声状态网络的非线性模型对网络流量进行预测.改进黑洞算法是在现有工作的基础上提出一种新的新解生成机制,可以提高算法的收敛速度和精度;相比于遗传算法、和声搜索算法等其他优化算法,所提出的改进黑洞算法不依赖自身相关参数的准确设定;将其应用于回声状态网络4个重要参数的优化选取,使得预测模型具有较好的预测稳定性.通过Mackey-Glass混沌时间序列和网络流量公共数据集的仿真实验,结果表明所提出的方法具有较好的预测性能. 相似文献
15.
为了借助智能方法对日益严重的水污染进行识别预测,提出了一种改进遗传神经网络识别算法.该算法通过各个分算子的多元冲突、融合、协作和互补等方式,有机地结合形成一种整体优化算子,它包含了降维差异选择、暂态自适应交叉和冲突自适应变异等3个新的彼此相关联的分算子,能有效地生发多样性,提高解空间处处可达性.数值优化及湖泊蓝绿藻神经网络识别实验表明,该算法在克服早熟、提高全局收敛速度和增强神经网络的泛化能力等方面,均取得满意的藻类识别效果. 相似文献
16.
基于遗传神经网络的汇率价格短期预测 总被引:2,自引:0,他引:2
该文将遗传算法和人工神经网络相结合,建立了遗传神经网络模型,并且应用到汇率价格的短期预测.结果表明,如果对网络以一组汇率数据加以良好的训练,该模型就有较好的预测能力. 相似文献
17.
神经网络模型在短期交通流预测领域应用综述 总被引:4,自引:2,他引:4
对基于神经网络的预测模型和方法的研究进行了综述,基于神经网络模型用于短期交通流预测的优点和固有缺陷,认为多种神经网络相结合的混合模型比单一的神经网络模型的预测效果要好,而将神经网络模型与其他领域的研究相结合的综合模型的预测效果要好于混合模型。因此,神经网络与各相关学科的人工智能技术有机结合将会形成强大的综合优势,更有效地用于短期交通流预测研究。 相似文献
18.
为获取样本的多样性特征,提出了一种改进的卷积神经网络结构。该网络中引入多层递归神经网络,利用卷积神经网络提取输入图像的浅层特征,同时利用卷积神经网络和递归神经网络并行提取高层特征,最后将两种网络学习到的特征进行融合输入到分类器中分类。利用迁移学习理论解决小样本集数据训练不足的问题,并将这种卷积神经网络结构应用于石油物资管线钢号识别中。实验探究了递归神经网络个数与卷积核个数对网络性能的影响,实验结果表明,改进的网络结构与其它网络进行对比,错误率降低了 3% 。 相似文献
19.
交叉口是道路交通的关键节点,其流量数据具有明显的非线性特征.本文提出一个两阶段预测模型对交叉口交通流特征进行预测.首先,通过交通流仿真技术对各交叉口进行仿真,并获得仿真流量,然后通过神经网络训练,预测交叉口各流向的交通流量.通过两个阶段不断迭代,校正构建具有高精度、泛化性能强的预测模型.最后,选取贵阳市31个具有代表性的交叉口的流量调查数据作为样本数据,将其中18个交叉口的仿真预测流量和实际观测流量作为神经网络模型的输入/输出因子,通过训练构建神经网络模型并验证模型的有效性.之后,将剩余交叉口的仿真流量数据作为模型的输入,模型输出数据即为修正的交叉口进口道的交通流量分布特征数据.结果表明:该方法具有数据收敛速度快,运算量小等特点,对于交叉口流量数据的预测具有很好的适用性. 相似文献
20.
研究剪接位点可以更深入地探索剪接机制和基因预测方法,准确预测剪接位点至关重要。基于深度学习技术提出一种新的预测方法,无需人工提取样本特征,以基因序列的K-MER编码向量作为输入,采用训练后的卷积神经网络(CNN)模型进行预测。基于人类基因HS3D供体数据集,与传统机器学习方法进行预测比较,结果表明预测模型的主要性能指标,包含马修斯相关系数(MCC)、灵敏度(SN)均超过传统的机器学习方法。 相似文献