首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
鸣禽类和非鸣禽类在鸣叫行为和发声核团等结构都存在着明显的差别.为了全面地了解它们的生理特点及其差异,对鸣禽类的[蒙古]百灵、燕雀和非鸣禽类的雀鹰的主要生理常数进行了分析测定与比较。结果表明:三种鸟在体形上有明显的形态学差异,其食性不同,呼吸、体温、心率、血细胞数和血红蛋白值等生理常数指标有显著地差异(P<0.05~0.01).鸣禽类的心率较快,而且体形大的鸟、呼吸频率、心率都比体形小的鸟慢。此外、3种鸟的体温在一天内均呈周期性的变化,中午体温最高,晚上体温最低.  相似文献   

2.
以成年雌性牡丹鹦鹉(Psittacula agapornis)为实验材料,用mp3采集声音、记录,Cool edit2000和wave-surfer软件对牡丹鹦鹉声音进行分析.结果表明,各种类型鸣声的频域特征基本一致,说明牡丹鹦鹉的叫声处于比较稳定的状态.主频在不同鸣叫类型中各有差异,单鸣声相对幅值最小.探讨了牡丹鹦鹉各类鸣声在时域和频域方面的差异,为有关亚鸣禽类鸣叫特征及其行为方面的研究提供资料.  相似文献   

3.
白腰文鸟前脑发声控制核团的雌雄差异性研究   总被引:1,自引:1,他引:0  
鸣禽的鸣叫行为在性别间存在着差异,这可能与其前脑内控制发声的神经核团有关.本实验采用石蜡切片、显微镜观察的方法,对雌雄白腰文鸟(onchura striata swinhoci)前脑发声控制核团的大小、神经元数量和密度进行了观察与对比.结果发现:雄鸟的三个发声控制核团均大于雌鸟;雄鸟核团中神经元的数量均超过雌鸟,而神经元的密度则小于雌鸟.以上结果差异均显著(P〈0.05),这说明白腰文鸟的发声控制核团存在着性双态性(Sexual dimorphism),  相似文献   

4.
出色的歌手     
当你漫步林中时常会听到悦耳的鸟叫声。鸟儿为什么要鸣叫呢?原来,它们的鸣叫有时是为了联系同伴,有时是因为找到了食物,大多是兴奋的一种表现。鸟类中有一半是鸣禽,善鸣叫,会营巢,体丰收轻捷灵活,大多能发出好听的声音,其中一些还是出色的歌手呢!现在就让我们认识它们吧。  相似文献   

5.
各种鸟类的鸣叫能力是不同的,其发声器官也各有特色。就其鸣叫能力,可将鸟分为两大类,即鸣禽类与非鸣禽类。两类鸟的鸣管及鸣肌的形态结构是有显著差异的。已知,在鸟类的发声中,舌下神经起主要作用。鸣肌受舌下神经(N_Ⅻ)的气管鸣管分支(tracheosyringoal 简称 ts)支配。这两类鸣与发声有关的神经分布也是不同的。曾有人对部分鸟类的发声器官及与其有关的神经分布做过一些报道(Gross.1964.Notte-bohm,1971,1972,1976.Warner,1972.Yamada,1964.Marlinovsky,1962.Martin,1981.Brackenbury,1980.)但对家鸽及吉林白鸡发声器官的结构特点,介绍得不够详细完整。对与发声有关的舌下神经(N_Ⅻ),舌咽神经(N_Ⅸ),迷走神经(NX)之间的关系,也未作详细的报道。  相似文献   

6.
鸣禽的鸣唱控制系统已成为研究神经系统与学习、行为和发育相关的一个重要模型.鸣禽的鸣啭表现出一种复杂的学习过程.鸣禽学习鸣啭的过程可以分为两个阶段.在感觉学习期,幼鸟必须听到成鸟的鸣啭,并形成鸣啭模板记忆;在感觉运动学习期,鸣禽通过听觉反馈与模板匹配逐步建立稳定的鸣啭.该文对近年来鸣禽鸣啭学习过程中的新生神经元及长时程增强研究进展进行综述.  相似文献   

7.
神经元再生作为特有的发育现象,在成年鸣禽前脑中,由侧脑室壁区产生的细胞经过迁移、替换、分化到达前脑高级发声中枢和发声学习中枢,加入原有神经回路。鸣禽利用这些再生的神经元,参与发声,学习记忆的感知与运动过程,在人类脑损伤的修复机制方面给予借鉴和启示。  相似文献   

8.
环境与性别分化   总被引:3,自引:0,他引:3  
性别的发育必须经过两个步骤:性别决定和性别分化。研究表明.一些物种的性别分化是由环境因素决定的。本文探讨了胚胎发育温度、外源性激素、生活场所、行为、营养条件以度日照对性别分化的影响。  相似文献   

9.
运用解剖学技术,分别对黄喉鹀、小鹀、田鹀、大山雀及红胁蓝尾鸲这五种鸣禽的鸣肌进行解剖.通过结构形态的比较研究,发现五种鸣禽各鸣肌之间的肌肉发达程度有一定的差异,并初步分析这些差异对鸣禽鸣声产生的影响.  相似文献   

10.
清晨一觉醒来,推开窗扇,悦耳的鸟鸣声随风飘进,宛如一曲优美的自然交响乐,使人感到心旷神怡.自古以来,人们对鸟鸣习以为常,可是鸟类的鸣叫是如何产生的?又是如何控制的?这些问题引起动物学家们的极大兴趣.国内外许多学者对此进行了系统的研究,正在逐步揭示这其中的奥秘.如果你仔细观察不同鸟类的鸣叫,你会发现鸟类的叫声分为两大类,一类是单词的叫声,以非鸣禽(鸡、鸭、鹅等)为代表;另一类是委婉的歌唱(鸣啭),以鸣禽类(大多数雀类)为代表.那么为什么鸟类的鸣叫有如此不同的情形呢?我们不妨比  相似文献   

11.
多巴胺是脑内关键的神经递质,它通过与多巴胺受体的作用及其下游的一系列反应来影响基因表达、神经调节和行为活动.在成年鸣禽中,中脑多巴胺能神经元投射到X区、HVC和RA等鸣唱相关核团,释放多巴胺的量受一定社会情境的影响,从而表现出directed song和undirected song等不同鸣唱行为.获得斑胸草雀脑中多巴胺受体的表达情况,为与社会情境有关的鸣唱行为及其他和多巴胺相关的行为活动的神经机制探究提供了基础,并可促进行为学、电生理等方面的研究.我们发现D1受体在斑胸草雀脑中的分布与其mRNA的分布基本一致:在脑的绝大部分区域都有分布;主要鸣唱核团HVC和RA有表达,与其周围区域差异不明显;LMAN中表达量较少;DLM中的表达量较高,并与其周围区域差异明显.但是纹状体内的表达与其周围区域的差异性没有mRNA明显;GCT中的表达量较多,与周围区域差异明显.  相似文献   

12.
禽的鸣啭表现出一种复杂的学习过程,鸣禽学习鸣啭的过程可以分为两个阶段.在感觉学习期,幼鸟必须听到成鸟的鸣啭,并形成鸣啭模板记忆;在感觉运动学习期,鸣禽通过听觉反馈与模板匹配逐步建立稳定的鸣啭.对近年来鸣禽鸣啭学习过程的研究进展进行综述.  相似文献   

13.
Rose GJ  Goller F  Gritton HJ  Plamondon SL  Baugh AT  Cooper BG 《Nature》2004,432(7018):753-758
Modern theories of learned vocal behaviours, such as human speech and singing in songbirds, posit that acoustic communication signals are reproduced from memory, using auditory feedback. The nature of these memories, however, is unclear. Here we propose and test a model for how complex song structure can emerge from sparse sequence information acquired during tutoring. In this conceptual model, a population of combination-sensitive (phrase-pair) detectors is shaped by early exposure to song and serves as the minimal representation of the template necessary for generating complete song. As predicted by the model, birds that were tutored with only pairs of normally adjacent song phrases were able to assemble full songs in which phrases were placed in the correct order; birds that were tutored with reverse-ordered phrase pairs sang songs with reversed phrase order. Birds that were tutored with all song phrases, but presented singly, failed to produce normal, full songs. These findings provide the first evidence for a minimal requirement of sequence information in the acoustic model that can give rise to correct song structure.  相似文献   

14.
鸣禽多巴胺(DA)神经元主要分布于中脑腹侧被盖区-黑质体致密部(VTA-SNc复合体)和中脑导水管周围灰质(PAG),并分别发出纤维投射至鸣唱控制核团前脑纹状X区、弓状皮质栎核(RA)和高级发声中枢(HVC).近年研究表明,中脑向鸣唱控制核团中释放的DA可以调控鸣唱控制核团中神经元的活动,进而调节鸣禽的鸣唱行为.该文对近年来,多巴胺对鸣禽发声相关神经元活动的调控研究做一综述.  相似文献   

15.
Kao MH  Doupe AJ  Brainard MS 《Nature》2005,433(7026):638-643
Cortical-basal ganglia circuits have a critical role in motor control and motor learning. In songbirds, the anterior forebrain pathway (AFP) is a basal ganglia-forebrain circuit required for song learning and adult vocal plasticity but not for production of learned song. Here, we investigate functional contributions of this circuit to the control of song, a complex, learned motor skill. We test the hypothesis that neural activity in the AFP of adult birds can direct moment-by-moment changes in the primary motor areas responsible for generating song. We show that song-triggered microstimulation in the output nucleus of the AFP induces acute and specific changes in learned parameters of song. Moreover, under both natural and experimental conditions, variability in the pattern of AFP activity is associated with variability in song structure. Finally, lesions of the output nucleus of the AFP prevent naturally occurring modulation of song variability. These findings demonstrate a previously unappreciated capacity of the AFP to direct real-time changes in song. More generally, they suggest that frontal cortical and basal ganglia areas may contribute to motor learning by biasing motor output towards desired targets or by introducing stochastic variability required for reinforcement learning.  相似文献   

16.
Brainard MS  Doupe AJ 《Nature》2000,404(6779):762-766
Birdsong, like speech, is a learned vocal behaviour that relies greatly on hearing; in both songbirds and humans the removal of auditory feedback by deafening leads to a gradual deterioration of adult vocal production. Here we investigate the neural mechanisms that contribute to the processing of auditory feedback during the maintenance of song in adult zebra finches. We show that the deleterious effects on song production that normally follow deafening can be prevented by a second insult to the nervous system--the lesion of a basal ganglia-forebrain circuit. The results suggest that the removal of auditory feedback leads to the generation of an instructive signal that actively drives non-adaptive changes in song; they also suggest that this instructive signal is generated within (or conveyed through) the basal ganglia-forebrain pathway. Our findings provide evidence that cortical-basal ganglia circuits may participate in the evaluation of sensory feedback during calibration of motor performance, and demonstrate that damage to such circuits can have little effect on previously learned behaviour while conspicuously disrupting the capacity to adaptively modify that behaviour.  相似文献   

17.
Gridi-Papp M  Rand AS  Ryan MJ 《Nature》2006,441(7089):38
Animals' sound-producing organs often act as an integrated whole--particular vocal structure are not directly associated with the creation of discrete syllables. But here we show that the 'chuck' of the 'whine-chuck' mating call of the túngara frog, Physalaemus pustulosus, is caused by a fibrous mass attached to the vocal folds; the chuck is eliminated by removal of this structure, although the frog still tries to produce the sound. Sexual selection affects the acoustic complexity of the frog's call, so evolution may have shaped this unusual vocalization, which is akin to the two-voiced song of songbirds.  相似文献   

18.
应用免疫组化方法对鸣禽粟鹀(Emberiza rutila)鸣啭控制核团内GABA能神经元的分布进行了研究,在高级发声中枢(HVC,high vocal center),古纹状体粗核(RA,the robust nucleus of the archistrialum),X区(Arca X)3个前脑核团内有GABA样免疫反应出现.HVC和RA中GABA能神经元胞体大小存在性别和季节间的差异.结果提示GABA能神经元可能参与了鸣禽鸣啭的产生和鸣啭学习。  相似文献   

19.
The role of sex steroids in the acquisition and production of birdsong   总被引:2,自引:0,他引:2  
P Marler  S Peters  G F Ball  A M Dufty  J C Wingfield 《Nature》1988,336(6201):770-772
Male birdsong is generally regarded as a secondary sexual characteristic under the control of gonadal steroids. Song typically waxes and wanes with the seasonal cycle of testicular growth and regression and decreases after adult castration. Testosterone therapy reinstates song, induces it in females, augments it in intact males, and spring testosterone profiles correlate with seasonal song production. Thus, testosterone has been viewed as a major factor in song acquisition and production acting either directly, or after aromatization within the brain. We show here, however, that song learning and early phases of the development of singing both take place in castrated male birds with no significant levels of testosterone in their blood plasma. Testosterone seems to be required for song crystallization, however. Oestradiol was unexpectedly still present after castration, evidently from a non-testicular source, throughout the period of male song acquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号