首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The subnucleosomal organization ofTetrahymena chromatin, which has an unusual H1 histone, was investigated by NaCl extraction and micrococcal nuclease digestion of nuclei. It was found thatTetrahymena histone H1 is extracted with 0.35 M NaCl, whereas bovine thyroid H1 is not. Micrococcal nuclease digestion ofTetrahymena nuclei did not yield chromatosomes as a stable intermediate, whereas digestion of bovine thyroid nuclei did.  相似文献   

2.
During S phase of the eukaryotic cell division cycle, newly replicated DNA is rapidly assembled into chromatin. Newly synthesised histones form complexes with chromatin assembly factors, mediating their deposition onto nascent DNA and their assembly into nucleosomes. Chromatin assembly factor 1, CAF-1, is a specialised assembly factor that targets these histones to replicating DNA by association with the replication fork associated protein, proliferating cell nuclear antigen, PCNA. Nucleosomes are further organised into ordered arrays along the DNA by the activity of ATP-dependent chromatin assembly and spacing factors such as ATP-utilising chromatin assembly and remodelling factor ACF. An additional level of controlling chromatin assembly pathways has become apparent by the observation of functional requirements for cyclin-dependent protein kinases, casein kinase II and protein phosphatases. In this review, we will discuss replication-associated histone deposition and nucleosome assembly pathways, and we will focus in particular on how nucleosome assembly is linked to DNA replication and how it may be regulated by the cell cycle control machinery.  相似文献   

3.
In the cell, many small endogenous metabolic molecules are involved in distinct cellular functions such as modulation of chromatin structure and regulation of gene expression. O-acetyl-ADP-ribose (AAR) is a small metabolic molecule that is generated during NAD-dependent deacetylation by Sir2. Sir2 regulates gene expression, DNA repair, and genome stability. Here, we developed a novel chromatin affinity-precipitation (ChAP) method to detect the chromatin fragments at which small molecules interact with binding partners. We used this method to demonstrate that AAR associated with heterochromatin. Moreover, we applied the ChAP method to whole genome tiling array chips to compare the association of AAR and Sir2. We found that AAR and Sir2 displayed similar genomic binding patterns. Furthermore, we identified 312 potential association cluster regions of AAR. The ChAP assay may therefore be a generally useful strategy to study the small molecule association with chromosomal regions. Our results further suggest that the small metabolic molecule AAR associates with silent chromatin regions in a Sir2-dependent manner and provide additional support for the role of AAR in assembly of silent chromatin.  相似文献   

4.
Site- and state-specific lysine methylation of histones is catalyzed by a family of proteins that contain the evolutionarily conserved SET domain and plays a fundamental role in epigenetic regulation of gene activation and silencing in all eukaryotes. The recently determined three-dimensional structures of the SET domains from chromosomal proteins reveal that the core SET domain structure contains a two-domain architecture, consisting of a conserved anti-parallel β-barrel and a structurally variable insert that surround a unusual knot-like structure that comprises the enzyme active site. These structures of the SET domains, either in the free state or when bound to cofactor S-adenosyl-L-homocysteine and/or histone peptide, mimicking an enzyme/cofactor/substrate complex, further yield the structural insights into the molecular basis of the substrate specificity, methylation multiplicity and the catalytic mechanism of histone lysine methylation. Received 10 June 2006; accepted 22 August 2006  相似文献   

5.
SET domain proteins modulate chromatin domains in eu- and heterochromatin   总被引:1,自引:0,他引:1  
The SET domain is a 130-amino acid, evolutionarily conserved sequence motif present in chromosomal proteins that function in modulating gene activities from yeast to mammals. Initially identified as members of the Polycomb- and trithorax-group (Pc-G and trx-G) gene families, which are required to maintain expression boundaries of homeotic selector (HOM-C) genes, SET domain proteins are also involved in position-effect-variegation (PEV), telomeric and centromeric gene silencing, and possibly in determining chromosome architecture. These observations implicate SET domain proteins as multifunctional chromatin regulators with activities in both eu- and heterochromatin – a role consistent with their modular structure, which combines the SET domain with additional sequence motifs of either a cysteine-rich region/zinc-finger type or the chromo domain. Multiple functions for chromatin regulators are not restricted to the SET protein family, since many trx-G (but only very few Pc-G) genes are also modifiers of PEV. Together, these data establish a model in which the modulation of chromatin domains is mechanistically linked with the regulation of key developmental loci (e.g. HOM-C).  相似文献   

6.
7.
8.
9.
10.
Over the last years it has become evident that the nuclear envelope (NE) is more than a passive membrane barrier that separates the nucleus from the cytoplasm. The NE not only controls the trafficking of macromolecules between the nucleoplasm and the cytosol, but also provides anchoring sites for chromosomes and cytoskeleton to the nuclear periphery. Targeting of chromatin to the NE might actually be part of gene expression regulation in eukaryotes. Mutations in certain NE proteins are associated with a diversity of human diseases, including muscular dystrophy, neuropathy, lipodistrophy, torsion dystonia and the premature aging condition progeria. Despite the importance of the NE for cell division and differentiation, relatively little is known about its biogenesis and its role in human diseases. It is our goal to provide a comprehensive view of the NE and to discuss possible implications of NE-associated changes for gene expression, chromatin organization and signal transduction. Received 8 August 2005; received after revision 13 October 2005; accepted 13 October 2005  相似文献   

11.
Emerging connections between DNA methylation and histone acetylation   总被引:18,自引:0,他引:18  
Modifications of both DNA and chromatin can affect gene expression and lead to gene silencing. Evidence of links between DNA methylation and histone hypoacetylation is accumulating. Several proteins that specifically bind to methylated DNA are associated with complexes that include histone deacetylases (HDACs). In addition, DNA methyltransferases of mammals appear to interact with HDACs. Experiments with animal cells have shown that HDACs are responsible for part of the repressive effect of DNA methylation. Evidence was found in Neurospora that protein acetylation can in some cases affect DNA methylation. The available data suggest that the roles of DNA methylation and histone hypoacetylation, and their relationship with each other, can vary, even within an organism. Some open questions in this emerging field that should be answered in the near future are discussed.  相似文献   

12.
Polyamine-dependent gene expression   总被引:15,自引:0,他引:15  
The polyamines spermidine and spermine along with the diamine putrescine are involved in many cellular processes, including chromatin condensation, maintenance of DNA structure, RNA processing, translation and protein activation. The polyamines influence the formation of compacted chromatin and have a well-established role in DNA aggregation. Polyamines are used in the posttranslational modification of eukaryotic initiation factor 5A, which regulates the transport and processing of specific RNA. The polyamines also participate in a novel RNA-decoding mechanism, a translational frameshift, of at least two known genes, the TY1 transposon and mammalian antizyme. Polyamines are crucial for their own regulation and are involved in feedback mechanisms affecting both polyamine synthesis and catabolism. Recently, it has become apparent that the polyamines are able to influence the action of the protein kinase casein kinase 2. Here we address several roles of polyamines in gene expression.Received 27 November 2002; received after revision 9 January 2003; accepted 31 January 2003  相似文献   

13.
14.
It is traditionally accepted that the DNA sequence cannot by itself explain all the mechanisms necessary for the development of living beings, especially in eukaryotes. Indeed part of the information used in these processes is stored in other ways, generally called epigenetic, whose molecular mechanisms are mostly unknown. The ultimate explanation for them might reside in the non-DNA moiety of chromatin which may play an active role in heredity (chromatin information). Histones are the universal structural component of chromatin. However, recent studies strongly suggest that histones, and their modifications — especially the reversible acetylation of lysines — may act as a recognition signal for regulatory proteins and they may participate, for this reason, in gene regulation. This type of information could be maintained through its replication and, ultimately, it could form the molecular basis of certain processes related to the development of the eukaryotic organisms.  相似文献   

15.
16.
17.
18.
19.
Methylation of lysine residues of histones is associated with functionally distinct regions of chromatin, and, therefore, is an important epigenetic mark. Over the past few years, several enzymes that catalyze this covalent modification on different lysine residues of histones have been discovered. Intriguingly, histone lysine methylation has also been shown to be cross-regulated by histone ubiquitination or the enzymes that catalyze this modification. These covalent modifications and their cross-talks play important roles in regulation of gene expression, heterochromatin formation, genome stability, and cancer. Thus, there has been a very rapid progress within past several years towards elucidating the molecular basis of histone lysine methylation and ubiquitination, and their aberrations in human diseases. Here, we discuss these covalent modifications with their cross-regulation and roles in controlling gene expression and stability. Received 24 September 2008; received after revision 21 November 2008; accepted 28 November 2008  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号