首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为了提高综采工作面瓦斯涌出量的预测精度,根据综采工作面瓦斯来源的分析,在瓦斯分源预测方法的基础上,融合神经网络预测技术,建立BP神经网络分源预测模型.结合某矿1242(1)工作面地质条件和开采技术条件,利用BP神经网络分源预测模型对工作面瓦斯涌出量进行了预测,结果表明,BP神经网络分源预测模型预测精度能满足现场需求,与...  相似文献   

2.
针对矿井回采工作面瓦斯涌出量预测精度欠佳的问题,建立基于极端梯度提升(XGBoost)瓦斯涌出量预测模型。首先,为解决瓦斯涌出量影响因素维数高和信息冗余等问题,在预测模型中引入主成分分析法(PCA)对11种影响因素降维。其次,通过贝叶斯优化算法(BOA)对XGBoost中超参数进行优化以提高预测模型的精度。最后,将训练集数据作为预测模型的输入进行训练,利用训练好的模型对测试集数据进行验证,并与传统的BP神经网络和支持向量机进行对比。结果表明:PCA-BO-XGBoost模型的平均绝对误差为0.070 3,均方根误差为0.095 7,能够满足对瓦斯涌出量预测的精度要求。与其他机器学习算法相比,建立的模型预测精度更高、耗时更短、效率均更高,对煤矿井回采工作面瓦斯涌出量的预测精度和效率提升具有借鉴作用。  相似文献   

3.
矿井回采工作面瓦斯涌出量预测新途径   总被引:1,自引:0,他引:1  
在研究大量国内外矿井瓦斯涌出量预测方法的基础上,通过比较,分析灰色理论在矿井瓦斯涌出量预测方法中的优势,根据某矿102回采工作面的相关瓦斯涌出数据,以灰色预测理论为基础,通过对影响回采工作面瓦斯涌出量的关键因素分析,建立该工作面的瓦斯涌出量GM(1,1)预测模型,通过模型的求解,给出预测结果,并对结果进行检验.结果表明,该模型预测结果与生产实际吻合度较高,对煤矿瓦斯管理具有十分重要的指导意义.  相似文献   

4.
瓦斯涌出是煤炭行业井下作业难以控制的一个危险因素。为研究瓦斯涌出量的变化规律,提高瓦斯涌出量预测的准确性,本文结合灰色理论与BP神经网络构建了灰色—BP神经网络系统用于矿井瓦斯涌出量的预测。以山西某矿为工程背景,以MATLAB软件为计算平台,对上述方法和模型进行了应用实践和现场验证,将灰色预测、BP神经网络和灰色—BP神经网络预测结果和原始数据进行了对比分析。研究结果表明:灰色—BP神经网络预测的数据精确度和可靠性更高,计算的结果与原始数据的规律基本一致。因此,灰色—BP神经网络系统能较准确地预测矿井瓦斯涌出量,对预测瓦斯涌出量的预测方面具有一定的指导作用。  相似文献   

5.
针对传统神经网络存在的收敛速度慢、容易陷入局部最小等缺陷,采用改良的BP算法———双权值迭代优化法,提高神经网络传统BP算法的训练速度。以三层神经网络为例,对权值进行优化。实验对比表明:双权值迭代优化法应用于瓦斯涌出量的预测,比一般BP网络有更高的预测精度和程序运行速度。  相似文献   

6.
为了保证煤矿安全开采,并提高煤矿瓦斯涌出量的预测精度,提出了改进思维进化算法优化BP神经网络的模型预测新方法。在思维进化算法中加入精英反向学习策略增加算法的全局搜索能力,在趋同操作中引入粒子群算法避免重复搜索,以此实现对BP神经网络的初始权值和阈值的全局寻优,并通过矿井监测到的各项历史数据进行验证。结果表明:与BP神经网络模型和MEA-BP神经网络模型相比较,该模型的预测精度更高,泛化能力更强。该模型的平均相对变动值为0.00116,平均相对误差为0.81%,均方根误差为0.0576,有效提高了对瓦斯涌出量的预测精度,提升了煤矿安全生产技术。  相似文献   

7.
根据玉华矿矿井瓦斯涌出量预测计算情况,指出本矿井必须建立瓦斯抽放系统,以降低矿井生产中的瓦斯涌出量,加强通风管理,确保矿井安全正常地生产。  相似文献   

8.
为提高矿井瓦斯涌出量的预测精度,基于Elman回归神经网络原理,以指数型线性回归、双曲线型线性回归及灰色预测三种方法得到的瓦斯涌出量预测值为样本数据,建立Elman组合预测模型,并利用MATLAB软件进行预测。结果表明,Elman组合预测结果的拟合曲线更接近实际情况。该模型有效提高了瓦期涌出量的预测精度,为煤矿安全生产提供了理论支持。  相似文献   

9.
针对矿井瓦斯涌出量影响因素复杂,数据序列波动性较大,灰色GM(1,1)预测模型精度低,本身存在一定缺陷的特点,将自记忆性原理引人灰色系统理论,建立了矿井瓦斯涌出量预测的灰色自记忆预测模型。经在韩城下峪口煤矿应用表明,该模型具有预测精度高,稳定性好的特点。  相似文献   

10.
遗传算法的BP网络模型进行瓦斯涌出量预测   总被引:2,自引:0,他引:2  
从提高采煤工作面瓦斯涌出量预测的速度和精度入手,将遗传算法与神经网络2种非线性最优化算法的优势加以融合,提出了一种利用遗传算法同时优化BP网络的连接权和拓扑结构的网络模型,并以韩城下峪口煤矿为例,进行了实际应用。结果表明:改进后的BP网络模型预测精度较高,具有良好的应用前景。  相似文献   

11.
遗传规划在采煤工作面瓦斯涌出量预测中的应用   总被引:8,自引:1,他引:8  
采煤工作面瓦斯涌出量的预测对于矿井设计和安全生产有着重要意义.由于影响采煤工作面瓦斯涌出量的各因素之间关系不明确,而遗传规划特别适用于各影响因素之间因果关系不明确的复杂非线性问题,因此,它为预测采煤工作面瓦斯涌出量提供了一条新的技术途径.应用遗传规划理论,建立了采煤工作面瓦斯涌出量的预测模型.结果显示,预测精度满足要求.表明该方法是可行的、合理的  相似文献   

12.
基因表达式程序设计是一种基于基因组和表现型组的新型遗传算法,该算法在运行时具有很高的效率,实验表明在求解很多问题的时候比遗传规划优越两个数量级以上.预测采煤工作面瓦斯涌出量是进行通风设计和制定矿井安全技术措施的重要依据,而影响采煤工作面瓦斯涌出量的各因素之间关系不明确.基因表达式程序设计比较适合于求解这一类复杂的非线性问题.本采用基因表达式程序设计,建立了采煤工作面瓦斯涌出量的预测模型.结果表明,预测结果比遗传规划得到的结果具有更高的预测精度和很好的稳定性.章最后指出了该方法具有广泛的应用前景.  相似文献   

13.
在研究主成分分析和基因表达式程序设计的基础上,提出一种基于主成分分析的基因表达式程序设计新算法,并将其用于采煤工作面瓦斯涌出量的预测.该算法先采用主成分分析方法对影响瓦斯涌出的变量进行降维处理,有效地减少预测模型的输入量,消除输入数据间的相关性,再用基因表达式程序设计建立采煤工作面瓦斯涌出量的预测模型.结果表明,预测结果比遗传规划和基因表达式等其他算法得到的结果具有更高的预测精度和稳定性.  相似文献   

14.
为进一步研究瓦斯涌出量与影响因素之间的映射关系,建立了径向基函数网络预测模型,并基于瓦斯涌出量与影响因素关系的实际收集数据,对其本构关系进行了函数逼近,通过网络所建立的映射关系对矿井瓦斯涌出量进行了预测。实例分析表明,利用RBF网络预测矿井瓦斯涌出量,拟舍精度较高,与BP网络相比较,具有较高的预测效率和精度。  相似文献   

15.
在3102巷掘进过程中,工作面瓦斯涌出量较大,达到0.2%~0.3%,致使回风流瓦斯体积分数超过0.5%,巷道瓦斯涌出量超过了3m3/min。同时在探水过程中,经常发生卡钻现象,致使探水工作无法达到预计的长度。针对这种情况,对3102掘进工作面采用单顶指标法和综合指标法来鉴定该煤层是否具有瓦斯突出危险性。  相似文献   

16.
矿井瓦斯是煤矿生产过程中的主要不安全因素,能否准确预测采煤工作面上的瓦斯涌出量将直接影响矿井开采的经济技术指标.从数据挖掘与机器学习的角度看,瓦斯涌出量的预测问题是回归分析的经典应用.支持向量机和模型树在回归分析方法中显示出了优越的性能,本文应用支持向量机和模型树方法建立采煤工作面瓦斯涌出量的预测模型.实验结果显示,预...  相似文献   

17.
综采工作面的瓦斯涌出规律及涌出量的预测   总被引:10,自引:0,他引:10  
根据综合机械采煤的特点和瓦斯流动理论,将瓦斯涌出源划分为煤壁(围岩)瓦斯涌出、落煤瓦斯涌出、采空区(残煤)瓦斯涌出及上下邻近层(未采分层)瓦斯涌出4个部分。针对现有回采工作面瓦斯涌出量预测计算方法存在的问题,以煤层瓦斯流动理论和实测数据分析为基础,系统的研究了综采工作面涌出源瓦斯的涌出规律,结合综合机械化采煤具有采、装、运连续作业的特点,分别对各瓦斯涌出源的瓦斯涌出量进行预测,进而建立了一种适应性范围广且准确率高的综采工作面瓦斯涌出量预测模型,对制定瓦斯防治方案,进而根治矿井瓦斯具有重要的实际意义。并且运用该模型对潞安集团新建的屯留矿进行了瓦斯涌出量的预测。  相似文献   

18.
基于神经网络的交通参数预测方法   总被引:1,自引:0,他引:1  
为能够迅速准确地采取相应措施处理交通拥堵问题,改善行车安全,进而提高路网效率,研究了基于神经网络的交通参数预测方法,预测了交通流量、速度和占有率.在分析常用BP(Back Propagation)神经网络算法的基础上,研究误差平方和最小化的L-M(Levenberg-Marquart)算法.相对于常规预测方法,基于神经网络的交通参数的预测方法对于随机的参数变化具有更好的适应性,能及时跟随交通参数的变化,所以精确度更高,适应性更好.仿真结果显示,L-M算法的训练速度相比于常规BP算法要快几十倍,预测交通流量、速度和占有率等参数的效果优于常用的指数平滑算法,因此基于神经网络的交通参数预测方法可以应用于交通领域.  相似文献   

19.
利用人工神经网络能够逼近任意复杂函数的特性,可对在役油气管道的腐蚀剩余强度进行预测,但其缺点在于人工神经网络的权值和阈值的初始化分配具有随机性且只是一种局部优化算法,收敛过程中容易出现局部极小解。引入遗传算法的全局搜索特性和不依赖于梯度信息特性,对采用Levenberg-Marquardt(L-M)算法的BP神经网络的权值和阈值进行优化,并结合由敏感性分析确定的油气管道失效压力的影响因素,建立GA-BP(L-M)网络预测模型。采用Modified ASME B31G计算出的样本数据训练网络并进行预测。预测结果表明,GA-BP(L-M)网络预测模型可以相对更好地预测油气管道的失效压力,在满足工程需要的前提下,是一种更加科学、准确的预测模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号