共查询到20条相似文献,搜索用时 15 毫秒
1.
《华南理工大学学报(自然科学版)》2017,(3)
中文分词是中文自然语言处理中的关键基础技术之一.目前,传统分词算法依赖于特征工程,而验证特征的有效性需要大量的工作.基于神经网络的深度学习算法的兴起使得模型自动学习特征成为可能.文中基于深度学习中的双向长短时记忆(BLSTM)神经网络模型对中文分词进行了研究.首先从大规模语料中学习中文字的语义向量,再将字向量应用于BLSTM模型实现分词,并在简体中文数据集(PKU、MSRA、CTB)和繁体中文数据集(HKCity U)等数据集上进行了实验.实验表明,在不依赖特征工程的情况下,基于BLSTM的中文分词方法仍可取得很好的效果. 相似文献
2.
《南京师大学报(自然科学版)》2019,(3)
手写文字识别是计算机视觉、自然语言处理领域中的重要问题和研究热点.本文针对手写文字识别问题,提出一种基于双向LSTM网络的手写文字识别方法.首先根据数据集特点进行归一化等预处理;然后使用CNN网络对图像的特征进行提取;接着通过双向LSTM网络来记忆手写文字序列的字句关系,并对文字序列进行预测;最后使用CTC-Loss作为损失函数,可以让整句标注的训练集在上述网络下收敛.对比实验表明本文提出的算法模型的有效性. 相似文献
3.
文本情感分析是自然语言处理领域中的重要任务,是指通过提取文本特征对基于文本的情感倾向进行分类。为了有效地提高文本情感分析准确率,提出一种新的基于多头注意力的双向长短期记忆(long short-term memory,LSTM)文本情感分析模型(Multi-Head Attention-based Bi-LSTM Model,MHA-B)。模型先利用双向LSTM进行初步特征提取,再结合多头注意力机制从不同的维度和表示子空间里提取相关的信息。在Large Movie Review Dataset与Semeval-2017-task4-A English两个数据集的实验结果表明:MHA-B模型的情感分析准确率与现有多种模型相比都有所提高。 相似文献
4.
中文分词是中文信息处理的基础、前提和关键.通过分析已有的中文分词算法,提出了一种新的分词词典机制,并根据新的分词词典机制提出了一种快速双向中文分词算法.使用该算法可以实现快速查找和双向匹配,从而极大地提高中文分词的速度和准确率. 相似文献
5.
针对老年人跌倒后不能得到及时救助带来的伤害,研究跌倒检测算法和及时告警,可以减轻跌倒给老年人带来的严重危害和后果。为了提高跌倒检测精确度和实时性,本文提出基于双向长短期记忆神经网络的可穿戴跌倒检测算法,该算法可以对输入的数据(取自惯性传感器)自动提取跌倒行为内部更深层的数据特征,实现数据从预处理到检测结果的过程处理。算法模型通过神经网络提取加速度传感器的特征向量,并利用双向长短期记忆神经网络进行跌倒检测。通过跌倒公开数据集SisFall验证算法模型,结果表明该算法在SisFall实验数据集上具备较高的检测精度,满足准实时检测要求,具有较好的实用性和较强的泛化能力。 相似文献
6.
针对老年人跌倒后不能得到及时救助带来的伤害,研究跌倒检测算法和及时告警,可以减轻跌倒给老年人带来的严重危害和后果。为了提高跌倒检测精确度和实时性,本文提出基于双向长短期记忆神经网络的可穿戴跌倒检测算法,该算法可以对输入的数据(取自惯性传感器)自动提取跌倒行为内部更深层的数据特征,实现数据从预处理到检测结果的过程处理。算法模型通过神经网络提取加速度传感器的特征向量,并利用双向长短期记忆神经网络进行跌倒检测。通过跌倒公开数据集SisFall验证算法模型,结果表明该算法在SisFall实验数据集上具备较高的检测精度,满足准实时检测要求,具有较好的实用性和较强的泛化能力。 相似文献
7.
机械钻速是钻井优化、缩短钻井周期的关键因素,传统的机械钻速预测大多是在钻井后进行钻井分析,预测效率和精度低、地层适用性不广。为了以更高效的方法预测得到高精度机械钻速,提出基于长短期记忆(LSTM)神经网络的深度序列机械钻速预测方法。采集实时钻井数据集,使用皮尔逊相关系数衡量各特征之间的相关性,筛选出井深、伽玛射线、地层密度、孔隙压力、井径、钻时、排量、钻井液密度等8个参数。构建LSTM神经网络模型,训练LSTM模型并预测ROP,对预测结果进行分析,并用决定系数(R2)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)等指标对LSTM模型、BP模型和SVM模型性能进行对比分析。结果表明:LSTM模型其R2、RMSE和MAPE的值分别为0.948、1.151和17.075,相较于BP模型和SVM模型,其R2更大,RMSE和MAPE较小,说明LSTM模型预测性能更好。该方法有助于钻井工程师和决策者提前获得钻井信息,从而更好地规划钻井作业,缩短钻井周期,同时为钻井参数预测提供新的途径,能改善以往预测方法在处理复杂地层问题时... 相似文献
8.
针对当前绿波协调控制存在的单向绿波通行效率低和双向绿波信号配时方案不合理问题,在交叉口绿信比和相位差确定的情况下,基于相位相序对单个交叉口从相位空间顺序上提出更多的信号配时方案模型;依据干线协调方向上、下行相位绿灯启亮时刻关系,利用重叠相位的空间灵活性和特定的取值区间,建立绿灯启亮时刻与有效绿灯时长的模型关系,实现双向绿波上、下行绿波带宽最大化;以银川市友爱中心街的交通控制为例,进行信号方案和仿真设计。仿真结果证明,该模型可以提高协调交叉口群整体的通行效率和绿灯时间利用效率。 相似文献
9.
基于最大概率分词算法的中文分词方法研究 总被引:1,自引:0,他引:1
本文提出了一种基于最大概率分词算法的中文分词方法,以实例贯穿全文系统描述了最大概率分词算法的基本思想与实现,根据针对大规模真实语料库的对比测试,分词运行效率有较大提高,该方法是行之有效的,并且提出了该算法的改进方向。 相似文献
10.
基于优化最大匹配与统计结合的汉语分词方法 总被引:1,自引:0,他引:1
汉语自动分词足中文信息处理的前提,如何提高分词效率是中文信息处理技术面临的一个主要问题.基于训典和基于统计的分词方法是现有分词技术的主要方法,但是前者无法处理歧义字段,后者需要大量的词频汁算耗费时间.本文提出优化最大匹配与统汁结合的分词方法,首先提出优化最大匹配算法,在此基础上提出了规则判断与信息量统计两种消歧策略.然后,给出了优化最大匹配与统计结合的分词算法,提高了分词的效率.最后,基十分词算法实现中义分词系统,并通过实验对算法进行了分析和验证. 相似文献
11.
为提高物联网入侵检测模型的综合性能,将残差神经网络(Residual Networks,ResNet)与双向长短时记忆(Long-Short Term Memory,LSTM)网络融合,构建物联网入侵检测分类模型.针对大规模物联网流量快速批量处理问题,在对原始数据进行清洗、转换等预处理基础上,提出将多条流量样本转换为灰度图,并利用基于ResNet和双向LSTM融合的深度学习方法构建物联网入侵检测分类模型.对分类模型的网络结构、可复用性进行综合优化实验,得到最终优化模型,分类准确率达到96.77%,综合优化后的模型构建时间为39.85 s.与其他机器学习算法结果相比,该优化方法在分类准确率和效率两个方面取得了很好的效果,综合性能优于传统的入侵检测分类模型. 相似文献
12.
《广州大学学报(自然科学版)》2019,(5)
中文分词是中文信息处理的前提和基础.文章综合基于词典的分词方法和统计的分词方法的优点,旨在提出一种基于词性标注与分词消歧的中文分词方法,针对初次分词结果中的歧义集进行对比消歧.利用正向、逆向最大匹配方法以及隐马尔可夫模型进行分词,得到三种分词结果中的歧义集.基于词信息对歧义集进行初次消歧.通过隐马尔可夫模型标注词性,利用Viterbi算法对每种分词结果选取最优词性标注.并基于定义的最优切分评估函数对歧义集进行二次消歧,从而获得最终分词.通过实验对比,证明该方法具有良好的消歧效果. 相似文献
13.
[目的]目前双向长短期记忆网络(Long short term memory,LSTM)在语音识别、图像识别和情感分类等方面的应用越来越广泛,基于此研究如何提高双向LSTM的准确率.[方法]提出一种改进的双向LSTM,通过对LSTM中输入门与输出门激活函数的改进,并结合改进的学习率,能够大大地提高神经网络的收敛速度与准... 相似文献
14.
核小体是染色体的基本结构单元。将核小体序列和非核小体序列预处理为时间序列数据,利用LSTM(long short-term memory network)进行迭代训练和长、短程特征学习,得到的LSTM模型可以实现核小体序列92.67%的识别准确率。研究表明,核小体序列与非核小体序列具有不同的特征,并且核小体序列具有高度可分类性。基于核小体序列的高度可分类性,可以实现核小体序列与非核小体序列的判断识别,这对于核小体定位及其动态性、基因转录调控、DNA复制与修复和DNA序列的功能及进化等的研究具有一定的生物学意义和价值。 相似文献
15.
基于Shapelet的时间序列分类算法具有可解释性强、准确率高、速度快的优点,然而在Shapelet发现过程中存在Shapelet产生冗余和形式局限的缺点,严重制约了算法性能的提高。针对这一问题,提出一种基于优化Shapelet的时间序列分类算法,该方法首先利用K-means生成典型的Shapelet候选集,加速Shapelet的生成过程;然后,融合相似性和类标差异性提出Shapelet的选取模型,确保Shapelet的多样性和精简性;最后,提出优化策略获取最佳的Shapelet,并以此为基础实施时间序列分类。实验结果表明,该方法具有较高的分类准确率,并对位移和扭曲特征明显的数据集具有良好的分类效果。 相似文献
16.
17.
一种基于语词的分词方法 总被引:10,自引:0,他引:10
提出了一种基于语词的分词系统 ,设计了相应的分词词典 .该分词词典支持词条首字Hash查找和标准的不限词条长度的二分查找算法 ,并应用于全文检索中 .结果分析表明 ,此分词系统无论是在检索速度上 ,还是在歧义处理上都有很大的改进 相似文献
18.
针对长短期记忆网络(long short-term memory,LSTM)无法有效提取温度数据的多尺度特征和反向特征的问题,该文提出了一种双向多尺度跳跃LSTM(bidirectional multi-scale skip long short-term memory,BMS-LSTM)的短时温度预测模型.该模型以LSTM为核心单元,采用双向深层网络结构提取反向特征; 根据温度数据日的周期性设置跳跃连接数提取多尺度特征,解决了指数增长的跳跃连接数后期跳跃尺度过大的问题; 最后使用全连接层进行特征融合预测.实验结果表明:BMS-LSTM成功提取了温度数据的多尺度特征和反向特征,预测均值误差仅为3.890,优于对比模型,是一种有效的短时温度预测模型. 相似文献
19.
准确的航空发动机故障预测能够为维修决策提供依据,提高装备完好率,避免灾难性故障并最小化经济损失。根据航空发动机传感器数据特点,提出一种基于双向长短期记忆(LSTM)神经网络的故障预测方法,建立故障预测模型,包括数据预处理、网络模型设计、训练与测试,得到在多种工作条件和故障下具有较强泛化能力的神经网络预测模型。使用C-MAPSS数据集对模型进行仿真验证,所提出的双向LSTM故障预测模型通过与RNN、GRU、LSTM时间序列模型对比,误差下降33.58%,得到更高的预测精度,非对称评分下降71.22%,具有更好的适应性。 相似文献
20.
藏文分词是实现藏文语音合成和藏文语音识别的关键技术之一。提出一种基于双向长短时记忆网络加条件随机场(bidirectional long-short-term memory with conditional random field model, BiLSTM_CRF)模型的藏文分词方法。对手工分词的语料经过词向量训练后输入到双向长短时记忆网络(bidirectional long-short-term memory, BiLSTM)中,将前向长短时记忆网络(long-short-term memory, LSTM)和后向LSTM学习到的过去输入特征和未来输入特征相加,传入到线性层和softmax层进行非线性操作得到粗预测信息,再利用条件随机场(conditional random field, CRF)模型进行约束性修正,得到一个利用词向量和CRF模型优化的藏文分词模型。实验结果表明,基于BiLSTM_CRF模型的藏文分词方法可取得较好的分词效果,分词准确率可达94.33%,召回率为93.89%,F值为94.11%。 相似文献