首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
采用自行设计的活化促进剂制备了不同机械镀镀层,即锌(325目与500目)及锌铝(5%)复合镀层,对镀层进行了5% NaCl溶液喷雾加速腐蚀试验、镀层的附着力性能检测与扫描电镜观察表面形貌和截面结构分析.试验结果表明:同等条件下,500目锌粉镀层耐蚀性优于325目锌粉镀层,锌铝复合镀层耐蚀性优于镀锌层,钝化后的镀层耐腐蚀性明显强于未钝化镀层;制备的机械镀锌、锌铝镀层附着力均符合标准.同时对耐蚀性的原因作了推测分析.  相似文献   

2.
使用闭合场非平衡磁控溅射离子镀技术制备了C/Cr复合镀层,并研究了Cr靶电流对C/Cr复合镀层摩擦学性能的影响规律。采用XPS检测了C/Cr复合镀层的化学成分,采用XRD分析了镀层的晶相结构,采用SEM观察了镀层的表面和断口形貌。实验结果表明:使用较小的Cr靶电流能改善镀层表面质量,降低镀层摩擦系数;Cr靶电流过大时,镀层的性能明显下降。  相似文献   

3.
对酸性化学镀、碱性化学镀、多元化学镀进行了多种实验。实验对3种不同镀层的性能逐一进行了测试;为了提高镀层的硬度,对镀层进行了不同温度的热处理。实验结果表明,多元镀Ni-Cu-P镀层的耐蚀性最佳,而酸性镀层次之,碱性镀层的耐蚀性最差;在400~500℃热处理后,镀层硬度达到最高值,其中以多元镀Ni-Cu-P的硬度最高,摩擦系数也低,说明多元镀层的耐磨性很好。  相似文献   

4.
Fe-Ni纳米合金镀层结构的XRD表征   总被引:1,自引:0,他引:1       下载免费PDF全文
采用可溶性阳极电刷镀技术制备不同镍铁比例合金镀层,采用多晶衍射技术研究镀层物相组成、镀层晶粒大小、晶粒取向、镀层的晶格畸变以及Fe-Ni的固溶情况.分析结果显示,镀层中Fe占据Ni的位置形成固溶体,Fe含量的增加影响了镀层的晶粒取向并增加了晶格的畸变度,从而提高镀层的硬度和耐磨性.  相似文献   

5.
通过化学镀获得了混晶(非晶+微晶)和纳米晶态两种结构的Ni-Mo-P合金镀层,并对混晶态镀层进行了不同的晶化处理,得到单相和双相的纳米晶镀层各一种.通过阳极极化曲线分析了各镀层在5%H2SO4溶液中的耐蚀性能,并与Ni-P镀层进行对比,发现镀态Ni-Mo-P纳米晶镀层的耐蚀性能优于镀态Ni-P纳米晶镀层,混晶镀层经退火处理后获得的两种纳米晶镀层的耐蚀性能均优于镀态混晶和纳米晶镀层,同时还发现退火处理获得的Ni-Mo-P双相(Ni+Ni3P)纳米晶镀层与退火处理后获得的Ni-Mo-P单相(Ni)纳米晶镀层的耐蚀性能相当.  相似文献   

6.
脉冲电沉积Ni-W合金镀层的微观结构及摩擦学性能   总被引:1,自引:0,他引:1  
利用脉冲电沉积的方法制备了Ni-W合金镀层,在微观形貌上与用直流电沉积方法得到的镀层进行比较.通过XRD研究了W在镀层中的含量以及对Ni-W合金镀层组织结构的影响;分析了该镀层在油润滑及干摩擦条件下摩擦系数随载荷与速度变化的情况,并与硬铬镀层进行比较.同时,探讨了在油润滑及干摩擦条件下Ni-W合金镀层的摩擦磨损机理.结果表明:Ni-W合金镀层在干摩擦条件下具有很好的耐磨性能.  相似文献   

7.
稀土对热镀锌层耐蚀性的影响   总被引:2,自引:0,他引:2  
实验研究了稀土元素对GI镀锌液的流动性、镀层厚度、镀层微观结构以及耐蚀性能的影响,初步探讨了稀土提高GI镀层耐蚀性的作用机理.结果表明:添加稀土具有细化镀层表面树枝晶、提高镀液流动性、降低镀层厚度和改善镀层耐蚀性的作用;镀层的耐腐蚀性随着稀土含量的增加先增后减,即稀土对镀层耐蚀性的影响存在一个最佳范围;实验条件下,稀土含量ω=0.045%~0.069%时,镀层的耐盐雾腐蚀性能约为纯锌层的2.8倍.  相似文献   

8.
镍基纳米SiC复合镀层的摩擦学性能   总被引:24,自引:0,他引:24  
为研究镍基纳米 Si C复合镀层的摩擦学性能 ,在A3钢板上制备了该镀层 ,利用扫描电镜对镀层显微组织进行观察 ,通过纳米显微力学探针测量镀层微区硬度 ,在 MM-2 0 0摩擦磨损试验机上对镀层进行磨损试验 ,研究阴极电流密度、温度和镀液中 Si C浓度等主要工艺参数对镀层耐磨性能的影响。结果表明 :Si C颗粒在镀层中分布均匀 ;Si C颗粒附近镀层的硬度是纯镍镀层的 3倍 ,但随着远离 Si C,复合镀层硬度明显下降 ;复合镀层的耐磨性能与普通镍镀层相比有较大幅度的提高 ,在油润滑条件下磨损体积为普通镍镀层的 1/ 8。  相似文献   

9.
采用直接化学复合镀法在铸铝102合金表面制备Ni-P-SiC复合镀层,利用XRD、扫描电镜等对镀态复合镀层的结构和形貌进行分析,并对镀层的显微硬度、结合力及耐蚀性进行测试.结果表明:镀层表面平整均匀;复合镀层中SiC微粒分布均匀且复合量较高,镀层厚度均匀、致密;复合镀层相结构更类似于非晶态;镀层镀态显微硬度可达823.8HV;镀层与基体结合较好,且复合镀层极大地改善了基体的耐蚀性.  相似文献   

10.
电沉积镍-磷-纳米金刚石纳米复合镀层性能研究   总被引:2,自引:0,他引:2  
利用电沉积法制备了镍-磷复合镀层和镍-磷-纳米金刚石纳米复合镀层,对镀层的结构和形貌进行了表征,研究了热处理温度对复合镀层硬度、摩擦性能的影响.研究发现,与电沉积Ni-P合金镀层相比,镍-磷-纳米金刚石复合镀层具有较高的酎磨性和较低的摩擦系数,硬化峰值出现在673K左右.另外,对纳米复合镀层性能改善的机理进行了讨论.  相似文献   

11.
纯聚酯粉末涂料是集装饰性和防腐性为一体的粉末涂料大家族中的新成员,本文阐述了聚酯树脂的制备,固化剂的选择及固化机理和聚酯粉末涂料的制粉工艺等内容,纯聚酯粉末涂料成本低廉,性能优良,应用广泛.积极地开发研制和生产纯聚酯粉末涂料,将会产生较深远的社会影响和经济效益.本文注意了成果的应用性和现实的可行性  相似文献   

12.
研究了涂料配方中淀粉取代部分胶乳对涂布纸性能的影响。探索两种不同方法增加涂料中的淀粉用量,同时降低涂料黏度。第1种方法是使形成凝胶状的淀粉液均匀包覆研磨碳酸钙(GCC),包覆后的研磨碳酸钙(GCC)作为颜料加入到涂料中去;第2种方法是使发生溶胀并达到平衡凝胶状的淀粉液直接加入到涂料中去。结果表明:采用第2种方法不仅可以有效地改善涂料的流变性,涂布生产运行性,还能增加涂布纸的油墨吸收性,提高涂布纸的光学和印刷性能;当涂布淀粉绝干质量为60 g,胶乳绝干质量为25 g时,涂布纸有较好的光学和印刷性能,不易掉毛掉粉,油墨还原性好。  相似文献   

13.
水松纸涂层专用水性涂料配方的研究   总被引:1,自引:0,他引:1  
对水松纸涂层专用水性涂料的性能要求和试验原理进行了分析,并通过大量探索性实验和正交实验对水松纸涂层专用水性涂料的性能进行优化,得出了性能比较优异的涂料。最后对水松纸涂层专用水性涂料今后的研究进行了展望。  相似文献   

14.
通过试验研究了碳化作为填料,其含量、粒度、对环氧胶粘涂层拉伸剪切强度、冲蚀磨损率、硬度的影响。试验表明:涂层加入碳化硼后均没程度提高拉伸剪切强度、耐冲蚀性、硬度,但存在一最佳值。本文推荐了最佳配方。  相似文献   

15.
紫外光(uv)固化粉末涂料综合了传统粉末涂料和辐射固化技术诸多优点,是涂料工业的前瞻性产品。介绍了紫外光固化粉末涂料的合成、固化机理、涂装工艺及潜在应用,说明光固化粉末涂料具有很高的经济优势和生态优势。  相似文献   

16.
本文研究了高温镍基铸造合金HH33上稀土含量对激光表面熔铸钻基合金涂层开裂敏感性的影响。结果表明,不加稀土时,基体中出现了微裂纹;稀土含量为0.5%Wt时,裂纹由基体向涂层扩展;稀土含量为2%Wt时,裂纹进一步扩展直至贯穿涂层。此时,裂纹的长度和宽度最大,裂纹周围的组织粗大;当稀土含量为3%Wt时,涂层及基体无裂纹出现,且涂层组织细小、均匀.涂层显微硬度值较未加稀土时低。  相似文献   

17.
研究了5CrMnMo钢为基材的铁基(G312)合金火焰喷涂层在基材超塑温度范围内的变形行为.利用应变速率比W选择涂层与基材的超塑温度.分析了基材与涂层均发生超塑变形时,涂层孔洞,涂层与基材结合界面的焊合机制及其对多冲抗力和耐磨性的影响规律.  相似文献   

18.
多元多层复合刀具切削性能研究   总被引:1,自引:1,他引:1  
刀具表面涂层技术是刀具材料发展中的一项重要突破 ,它是解决刀具材料的主要矛盾 ,即红硬性、耐磨性、强度与韧性兼而有之的一个有效措施 采用多元多层复合涂层时 ,可获得单一涂层难以企及的优异切削性能 受涂层设备、涂层工艺等因素制约 ,国内首次对 4层以上涂层刀具进行切削性能研究 文中阐述了 4种多元多层刀具进行切削试验情况  相似文献   

19.
致密热解碳层的混合气体包覆工艺研究   总被引:1,自引:0,他引:1  
致密热解碳层是高温气冷堆包覆燃料颗粒的关键组成。该文介绍了在流化床包覆炉中采用丙烯(C3H6)和乙炔(C2H2)的混合气体作为反应体系的包覆工艺,以消除只用丙烯作为包覆气体时产生的热效应。讨论了包覆工艺参数(沉积温度、乙炔浓度等)对致密热解碳层的密度、沉积速率和碳利用率的影响,确定了制备致密热解碳层的最佳工艺条件。研究的结果在生产规模流化床包覆炉中得到了验证和实际应用。  相似文献   

20.
本文报道了耐温、耐酸的新型防护涂料的性能 ,该涂料不同于传统的硅酸盐双组份液体涂料 ,它为固体单组份 ,施工、运输、储存相当方便  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号