首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
在材料低周疲劳过程中,由检测的应变信号,利用现代谱分析技术处理,得到材料疲劳过程的塑性变形并进行实时跟踪.  相似文献   

2.
在室温应变控制下,对ZL114A铝合金进行了单轴低周疲劳试验研究和显微分析,结果表明:材料在低周载荷下,当循环应变幅值小于0.6%,材料没有表现出循环硬化现象.随着循环应变幅值的增加,材料表现出明显的循环硬化现象;且随着应变幅值的增加材料的附加强化程度增大;应变幅值的大小对ZL114A铝合金低周疲劳寿命有较大影响,随着应变幅值的增大,疲劳寿命降低明显;疲劳损伤断口表现出大量的韧窝和韧性断裂的特征.  相似文献   

3.
复合材料相比于金属材料具有更优良的性能,可以满足轨道交通车辆对轻量化、低能耗、舒适性的需要,逐渐成为各国轨道交通领域关注的热点.中国将复合材料应用于轨道交通车辆结构的研究起步较晚,缺乏相关经验,需要开展关于转向架构架这种大型主承载结构疲劳损伤分析的深入研究.本文介绍了国内外应用复合材料技术于转向架构架上的研究进展,重点综述了在复合材料转向架构架上广泛应用的纤维增强复合材料层合板的疲劳损伤分析方法,简要分析了几种疲劳分层损伤模型,并对目前研究中面临的困难和挑战进行了总结.  相似文献   

4.
本文采用恒应变幅(△ε)低周疲劳试验方法,测定了高碳Patenting高强度钢丝和低碳LAHS钢丝的循环应力幅(△σ)和最大应力(σmax)与循环周次(N)之间的关系。研究了温形变处理对钢丝低周疲劳寿命的影响。得出,温形变处理可提高低周疲劳寿命30%~35%。对这类钢丝的低周疲劳损伤进行了评价。  相似文献   

5.
通过红外热象仪对40CrNiMoA板试样在低周疲劳过程中的表面温度场测量及热分析计算,得到了试样表面热耗率的分布及其变化规律。  相似文献   

6.
测定了碳纤维/树脂基T300/QY8911复合材料的3组典型单轴循环应力下的S-N曲线.基于试验数据,建立了多轴循环应力作用下单向板的寿命模型,并通过整合平面应力分析、失效分析和材料性质退化模块模拟多向层压板的疲劳失效过程.这种方法试图基于单向板在确定应力比下的疲劳试验结果,预测同种材料体系的任意铺层形式的多向层压板在复杂循环应力作用下的疲劳寿命.对于以分层破坏为主控因素的层压板,基于层间应力的计算结果,用计算面内累计损伤的方法计算分层损伤,层压板的寿命等于分层扩展寿命和分层后子层板剩余寿命之和.考虑分层扩展后,层压板的寿命预测结果得到明显改善.  相似文献   

7.
复合材料由于疲劳载荷导致的损伤因素很多,它们都将导致刚度下降,这些损伤因素的相互作用,使得复合材料的损伤机理十分复杂.本文对复合材料的一些典型损伤分别从纤维复合材料的微观结构出发、提出力学模型,对纤维断裂、界面脱胶及分层导致的刚度下降用宏观力学原理进行了分析,并与实验结果进行了比较.  相似文献   

8.
LY12CZ铝合金微动疲劳特性研究   总被引:1,自引:0,他引:1  
杨茂胜 《科学技术与工程》2012,12(25):6290-6295,6309
选用LY12CZ铝合金材料作为研究对象,以试验为基础,研究了LY12CZ铝合金的微动疲劳特性。结果表明:在运行工况微动图中,接触压力是影响接触区面积分布的最主要因素。在材料响应微动图中,微动区域的破坏形式完全依赖于循环次数。LY12CZ铝合金的微动磨损机理包括表面划伤和粘着、磨屑的形成、氧化物形成三个阶段,而微动疲劳损伤包括划痕的产生、微裂纹的形成、氧化颗粒的出现、裂纹从蚀坑底部产生四个过程。  相似文献   

9.
分析焊接转子接头的低周疲劳损伤过程对转子的安全性评估具有重要的指导意义。该文采用疲劳损伤力学的方法分析NiCrMoV钢汽轮机低压焊接转子1∶1模拟件接头低周疲劳过程。针对损伤变量表征方法中的弹性模量法和应力幅值法应用的局限性,并考虑循环前期循环软化(硬化)造成的材料损伤,提出了适用于循环软化材料或者循环前期出现短暂循环硬化、随后循环软化的材料的低周疲劳全过程损伤变量的分析方法——复合分析法。试验结果表明:在NiCrMoV钢汽轮机低压焊接转子接头的低周疲劳损伤过程分析中,采用复合分析法较弹性模量法和应力幅值法更为合理。  相似文献   

10.
当复合材料层合板受到低速冲击产生不可视的损伤后,会导致层合板的剩余强度和疲劳性能显著下降。为考虑含冲击损伤层合板剩余强度对疲劳寿命的影响,本文修正了应力场强法,并结合无孔层合板的指数函数疲劳模型,建立了含冲击损伤的复合材料疲劳寿命预测模型,简化了计算过程,提高了预测精度。借助T300/5405层合板不同冲击能量后的压-压疲劳试验以及T300/BMP316层合板冲击后的拉-拉疲劳试验数据,验证了本文方法预估模型的可行性和适用性,为工程应用提供了理论数据。  相似文献   

11.
基于PBL剪力键,提出了适用于钢箱砼组合桥梁的PBH剪力键。以PBH剪力键疲劳损伤规律为研究目标,开展5组12个PBH剪力键静载及疲劳推出试验。基于试验数据,对比静载试验和疲劳试验的累积滑移曲线规律,分析疲劳加载荷载比对试件疲劳寿命影响,利用裂缝开展过程分析PBH剪力键疲劳损伤发展历程。研究表明:PBH剪力键疲劳破坏与静载破坏的规律性类似;荷载比对PBH疲劳损伤过程及寿命影响较大;PBH剪力键的疲劳损伤累积滑移主要由混凝土榫的破碎、迁移造成。  相似文献   

12.
研究了2024铝合金常温下的高周疲劳性能,获得了2024铝合金在不同应力状态下的S-N曲线.分析了疲劳试样的断口形貌和裂纹萌生/扩展机理,以及疲劳试样的组织结构与疲劳性能之间的关系.结果表明,疲劳极限随着应力集中系数的增加而降低,当应力集中系数相同时,疲劳极限随着应力比的减小而降低;2024铝合金的疲劳断口以穿晶断裂为主;第二相颗粒起到了阻碍疲劳裂纹扩展的作用,使2024铝合金的高周疲劳强度得到了明显提高.  相似文献   

13.
通过对球墨铸铁 QT60-10 材料低周疲劳性能的实验研究,获得了该材料的循环应力-应变曲线和应变-寿命曲线,实验证明球墨铸铁在拉伸和压缩载荷作用下应力-应变响应具有不对称性,提出了以应力和应变范围处理实验数据的方法。本文还给出了与其它两种球墨铸铁低周疲劳性能的对比,为设计选材提供了依据。  相似文献   

14.
为了评估国产某百万级超超临界汽轮机高压转子的高温强度,利用有限元分析软件Abaqus建立了超超临界汽轮机高压转子的轴对称有限元模型,加载了相应的热力边界条件,分析了转子在冷态启动过程中的温度和应力分布以及特征点的等效应变变化过程,并采用Mansoncoffin公式预测转子在冷态启停过程中产生的疲劳损伤.结果表明:在转子启动初期,凝结换热所导致的转子表面与转子中心的温差较大;在转子启动初期,转子受热不均匀所引起的热应力较大,在转子启动后期,其应力降至较低水平;高压转子在平衡活塞圆弧段产生的低周疲劳损伤最大,但其值仅为1.692×10-4,在所设计的使用条件(30a启停360次)下不会出现低周疲劳失效的危险.  相似文献   

15.
1420铝锂合金的疲劳裂纹扩展和自抑制   总被引:2,自引:0,他引:2  
研究了1420铝锂合金在2种不同应力比(0.1和0.7)下的疲劳长裂纹扩展特性和闭合效应,测量了裂纹扩展的门槛值和闭合力.虽然1420合金具有较低的本征门槛值,然而在低应力比下却呈现出优良的疲劳裂纹扩展特性,表现在低应力比下较高的疲劳门槛值和近门槛区裂纹扩展的自抑制.从实验的角度探讨了该合金“自抑制”现象产生的原因,指出这种作用主要来源于外韧化作用,包括分层韧化作用和晶体学扩展路径导致的高的裂纹闭合效应  相似文献   

16.
本文用Neuber局部应力应变分析法估算了新材料铸造锌铝合金ZA27蜗轮的疲劳裂纹形成寿命。  相似文献   

17.
本文对ZA27和ZCuSn10P合金在室温下的循环应力应变特性进行了测试,得到了两种材料的循环应力应变曲线。对两种材料的疲劳试件断口进行了分析。结果表明:ZA27合金表现为循环软化,疲劳断口为准解理。ZCuSn10P1表现为循环硬化,疲劳断口以韧窝和疲劳辉纹为主。  相似文献   

18.
根据循环载荷下的裂尖循环弹塑性应力应变场分析,结合Manson-Coffin经验关系,定义了基于循环塑性区内材料塑性应变幅值的单位平均损伤;根据Miner疲劳线性累积损伤理论,以裂尖扩展方向的循环塑性区尺寸为裂纹裂尖的单位扩展量,提出了基于低周疲劳损伤预测I型裂纹扩展速率的新预测模型.新模型中给出的参数均有明确的物理意义,不需要人为调试.Cr2Ni2MoV和X12CrMoWVNbN 10-1-1两种转子材料的低周疲劳试验结果表明,新模型对这两种材料裂纹扩展速率的预测结果与试验结果吻合良好.利用相关文献中提供的6种材料的低周疲劳性能数据,进一步验证了新模型用于裂纹扩展速率预测的良好适用性.  相似文献   

19.
沥青混合料是一种粘弹性材料,而目前的沥青路面疲劳损伤分析方法大都采用传统的线弹性疲劳方程,无法反映环境温度、加载历史的影响.在分析作者提出的能够反映温度、行车速度和轴载影响的沥青混合料粘弹性疲劳损伤演化模型的基础上,提出了沥青混合料粘弹性疲劳损伤演化模型参数的试验方法和沥青路面粘弹性疲劳损伤分析简化方法,运用该方法分析了沥青路面在重复汽车荷载作用下疲劳损伤的演化进程,结果表明该粘弹性疲劳损伤演化模型是可以用来分析沥青路面疲劳寿命的.图2,表2,参10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号