共查询到20条相似文献,搜索用时 65 毫秒
1.
2.
为提高粒子群优化算法在优化问题中的效率,本文提出了并行粒子群优化算法(BLP-SO).基本思想是并行机制 最佳粒子共享 分层搜索.主要工作包括(1)信息共享机制中引入了区域学习,使粒子更新能参考其他粒子的信息;(2)提出了粒子群两层划分模型,底层利于扩大搜索范围,上层利于全局精细搜索;(3)证明了关于粒子群和并行粒子群收敛性定理;(4)在4个基准函数上的优化实验表明,新方法比经典的IPPSO并行粒子群算法在解的精度上提高了51.93%到96.10%. 相似文献
3.
一种基于滤波器矩阵的Hammerstein预失真器 总被引:1,自引:0,他引:1
预失真器建模的准确性是保证有效补偿带记忆功率放大器非线性失真的重要因素之一,尤其是模型对功率放大器逆记忆特性的描述能力.针对目前预失真器模型对功率放大器逆记忆效应描述不充分的问题,提出一种改进的Hammerstein预失真器,该预失真器以查找表级联滤波器矩阵作为其实现形式,较好地描述了功率放大器的逆记忆特性.仿真实验表... 相似文献
4.
建立了以最小制造成本为目标,以装配功能要求和工序加工能力为约束的并行公差优化设计模型.将粒子群工具箱作为并行公差优化设计模型的求解工具,并给出具体的流程.最后,通过一个实例的求解验证利用基于粒子群工具箱的粒子群算法求解并行公差优化模型的可行性.通过与已有结果的比较,说明了该方法在求解非凸规划问题时的优越性. 相似文献
5.
文中提出了基于坐标旋转角的均值粒子群算法,其原理是:在每次迭代中,粒子的下一个飞行位置的方向与当前最好位置的方向之间偏角较大时,则粒子的位置和速度更新中加入一个角度来改变位置和速度的方向,同时角度也更新。通过典型函数优化实验表明,本文算法具有较高的计算精度和较快的收敛速度。 相似文献
6.
提出了两种改进的粒子群优化算法--引入了"预筛选"机制的PSPS0和线性改变最大速度vmax的LCVPSO,仿真实验表明,PSPSO和LCVPSO比标准PSO算法具有更好的性能. 相似文献
7.
8.
在已有的并行粒子群优化算法的基础上,结合遗传算法,并利用Java语言支持多线程特点,开发出单子群、k子群、任意子群三种遗传并行粒子群优化算法。通过对6个Benchmark测试函数的测试分析,表明这三种算法都具有运行速度快,求解质量高的特点。 相似文献
9.
在已有的并行粒子群优化算法的基础上,结合遗传算法,并利用Java语言支持多线程特点,开发出单子群、k子群、任意子群三种遗传并行粒子群优化算法.通过对6个Benchmark测试函数的测试分析,表明这三种算法都具有运行速度快,求解质量高的特点. 相似文献
10.
粒子群优化算法研究进展 总被引:1,自引:0,他引:1
粒子群优化(PSO)算法是一种源于人工生命和演化计算理论的新兴优化技术.其基本思想为:每个粒子被随机的初始化以表示一个可能的解,并在解空间通过更新迭代搜索最优解.PSO的优势在于算法简单,对目标函数要求少,易于实现而又功能强大.目前,已受到演化计算领域的学者们的广泛关注,并提出了许多改进的算法.本文阐述基本粒子群的原理,给出了各种改进的算法,并展望了PSO的发展方向. 相似文献
11.
基于改进粒子群优化的弹道并行求解算法 总被引:1,自引:0,他引:1
弹道解算精度与解算时间直接影响了火控系统的整体性能,然而精度与时间往往是相互矛盾的两个因素,在不损失精度的情况下提高解算速度具有重要意义. 基于改进粒子群优化的弹道并行求解算法,采用并行求解算法充分发挥多核计算机的性能,从而在不损失精度的前提下有效地提高了弹道解算的效率. 该方法首先通过引入粒子群优化算法将弹道解算转化为一个寻优过程,利用周氏迭代修正公式计算得到的修正角度引导粒子群更新加快算法的收敛速度;然后通过将粒子分配到并行域的线程中将弹道解算方法并行化. 数值实验表明本方法可以有效提高弹道解算的收敛速度,将计算时间平均缩短为原有时间的1/5. 相似文献
12.
针对非线性函数优化问题,提出一种新型的模糊粒子群算法.该算法基于模糊控制器中输入输出的模糊化处理和粒子群寻优的特点.算法在Matlab 2008环境下编程实现,针对几个典型复杂的非线性函数进行优化测试.实现结果表明:模糊粒子群算法是一种简单有效的算法,具有良好的有效性和鲁棒性. 相似文献
13.
基于云模型的随机性、模糊性和稳定性特征,通过正态云发生器对量子粒子群优化算法(QPSO)进行改进,提出了一种基于正态云模型的自适应量子粒子群优化算法(CMAQPSO).该算法将正态云模型引入到QPSO算法的研究,定义了收缩扩张系数的云调整策略和粒子云变异算子的构建公式,给出了量子势阱中心调整策略和边界修正策略.用5个标准测试函数对SPSO,OPSO,CVCPSO,CMAQPSO 4种算法进行对比测试,实验结果表明,CMAQPSO在5个测试函数上的平均寻优效果都明显优于其他3种算法. 相似文献
14.
基于云模型的随机性、模糊性和稳定性特征,通过正态云发生器对量子粒子群优化算法(QPSO)进行改进,提出了一种基于正态云模型的自适应量子粒子群优化算法(CMAQPSO).该算法将正态云模型引入到QPSO算法的研究,定义了收缩扩张系数的云调整策略和粒子云变异算子的构建公式,给出了量子势阱中心调整策略和边界修正策略.用5个标准测试函数对SPSO,OPSO,CVCPSO,CMAQPSO 4种算法进行对比测试,实验结果表明,CMAQPSO在5个测试函数上的平均寻优效果都明显优于其他3种算法. 相似文献
15.
分段式微粒群优化算法 总被引:3,自引:0,他引:3
提出一种分段式微粒群优化算法。该算法将所要搜索的区域分成若干段,首先在每一区段内搜索出区段的最优位置,然后将各区段的最优位置组成一微粒群,继续搜索全局最优位置。通过对5个常用标准测试函数进行优化计算,仿真结果表明:分段式微粒群优化算法能有效地搜索到全局最优解,具有比基本微粒群优化算法更快的搜索速度和更好的优化性能。 相似文献
16.
基于改进粒子群优化算法的Ontology划分方法 总被引:2,自引:0,他引:2
为解决规模巨大的Ontology难以使用的问题,提出了一种基于改进粒子群优化算法的Ontology自动划分方法.根据Ontology划分的要求,将概念落入某个子Ontology的概率作为粒子的速度,而将概念落入的子Ontology编号组成的数字串作为粒子,设计了粒子群优化算法的适应度函数,并给出了Ontology划分算法的具体步骤.最后进行了相关对比实验,结果表明,该方法具有比其它方法更好的划分效果. 相似文献
17.
高速旋转飞轮转子的支承参数决定转子在过系统临界转速时的振幅大小和工作转速下的运行稳定性。选用具备自适应学习能力的粒子群算法(PSO),设计出能够表征系统过临界转速时的振幅和工作转速下衡量系统稳定性的目标函数式,利用PSO和该目标函数式,对系统进行参数优化。实验结果表明,利用PSO算法对该目标函数进行优化,最终得到的高速旋转飞轮转子系统参数,能有效地改善系统性能,提高系统运行稳定性。 相似文献
18.
指出造林规划设计问题实质是一个离散约束优化问题。应用离散粒子群优化算法求解目标函数,以保证解的合理性法和惩罚函数法相结合处理约束条件。分析实例表明,离散粒子群优化算法可用来优化造林规划设计方案,与模拟退火算法比较,效果更好。此研究结果可为科学造林和最优化经营管理提供新思路,丰富粒子群应用领域。 相似文献
19.
将小生境技术引入到微粒群优化算法之中,设计出一种小生境微粒群优化算法。该算法除了始终赋予微粒生命力,还将位置重叠的差适应值微粒在搜索空间重新启动。通过对4个常用测试函数进行优化计算,仿真结果表明小生境微粒群优化算法比基本微粒群优化算法具有更好的优化性能。 相似文献
20.
介绍了粒子群优化(PSO)算法的原理,研究了将PSO算法应用于神经网络训练的方法,给出了算法软件实现的基本流程,并对Iris分类问题做了仿真实验,通过与BP算法的比较,结果表明基于PSO的神经网络训练算法操作简单,易于实现,而且训练精度较高,有良好的收敛性. 相似文献