首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 915 毫秒
1.
目前人们的研究兴趣是改变光脉冲的群速度,产生光停、慢光、快光(超光速的光).按照物理理论,反常色散媒质中可能出现“快光”,而它就称为“快光媒质”.已有许多产生快光的实验,这就开辟了被称为“色散技术”的研究前景.例如,科学界对群速超过真空中光速c的信号传播感到好奇.而在另一方面,以群速vg行进的短波脉冲、微波脉冲、光脉冲,如vg比无限大还大,就称为负群速(NGV)传播.这时发生如下现象:输入脉冲峰到达被测物(DUT)之前,DUT输出端已呈现脉冲峰的身影.这虽与直观经验不符,但都是实验发现.当某种材料中光的群速为负,这就是NGV媒质.虽然NGV时常出现在增益系统中,无源系统也不断发现NGV现象;后者可由同轴电缆、波导、微带线、光纤而构成.实验中如加大失配即可加大群时延,进而获得NGV.若n为媒质有效折射率,则获得NGV的条件是{f/n dn/df}>1.虽然许多实验证明了群速超光速现象存在,科学界仍感困惑.2001年证明了关系式(-v)e=|T|2vg((-v)平均能速,T系统传输系数),故当vg很大(vg>c|T|-2)时能速将比光速大.有关研究带来了令人兴奋的可能性.Brillouin的信号速度定义存在问题,数学意义超越物理意义.我们的反驳是,最重要之点在于传播中不失真的波群(波包).由此出发的理论分析证明,众多NGV研究者已观察到的超光速传播其实就是实现了超光速通信.……超光速群速传播和负群速波传播,这两者各有其用途.科学家们把这与多个领域(如光通信、光场压缩态、量子纠缠)相联系,并得出结论说,高效、低耗的快光的潜在应用是广阔的.  相似文献   

2.
近年来有众多实验证明了超过真空中光速的可能性,并从理论上和实验上对群速超光速和负群速作了研究。本文着重论述负波速的光传播,例如光脉冲通过被测物(如原子气室或光纤)时其峰值在进入它之前就在它的输出端出现了,从而呈现出负渡越时间和负群速(NGV)。可以证明当Goos-Hnchen位移GHS为负,即D<0,而|D|>dΦ/dkz,则可获得负渡越时间(τ<0)。……文中论述的NGV传播是依靠反常色散媒质或消失波而实现的。在电磁理论中相速、群速可定义为矢量或标量。如在标量表达时出现负号,例如νg=-c/ng,不能认为负号只表示向反方向传播。必须指出在Sommerfeld-Brillouin波速理论中负群速是超光速的一种形态。本文提出了开展"三负研究"的思想,所谓"三负"是指负折射、负波速和负GH位移。如果我们透过现象看本质,这三方面的内在联系是非常重要的。最后,本文深入讨论了量子波动的内容和意义。  相似文献   

3.
为了计算粒子隧穿通常认为是禁区的势垒的时间,应考虑波包的传输。这被许多科学家(如MacColl、Wigner、Hartman、Büttikar等)讨论过。按照Hartman的解析表达式,隧穿时间是非零的正值;而对于较厚的势垒,传输时间与垒厚无关。这为粒子的超光速运动提供了理论上的可能性。1960年L.Brillouin讨论了色散媒质中的光传播,结果认为信号速度vs与群速vg并无不同,除非在反常色散区。vg可以比真空中光速大(vgc),甚至变为负值(vg0)。这样就使人们对波传播中的负时延产生了兴趣。但Brillouin说"负群速(NGV)没有物理意义",现在我们知道这样讲是错误的。本文着重研究了负群速特征(NGVF);首先指出存在两种情况:空间中的反向运动和对时间的反向运动。指出在波动力学中波速度(例如vp、vg)是标量,故NGV的含义并非仅为"运动方向反了过来"。其次指出NGV波是超前波,它不仅比真空中光速c快,而且快到在完全进入媒质前就离开了媒质。电磁脉冲可以作时间超前运动是一种负性运动。这种现象对物理学家而言很重要,因为他们想知道究竟发生了什么。最后给出了我们使用互补类Ω结构(COLS)构成的左手传输线的微波脉冲传输特性的实验研究。在(5.6~6.1)GHz形成阻带,其中状态为反常色散。获得了NGV特征,即脉冲超前传播——输入脉冲峰进入样品前输出脉冲峰即在出口浮现。获得了负群速,vg=(-0.13 c)~(-1.85 c)。  相似文献   

4.
电磁波传播中的超光速群速和负群速   总被引:1,自引:0,他引:1  
分析了产生群速超光速和负群速的条件。讨论了截止波导中消失波条件下的超光速群速和负群速。用模拟同轴光子晶体的结构进行实验,获得了阻带中的超光速群速,Vg=(1.5-2.4)c。  相似文献   

5.
北京广播学院通信工程系的黄志洵、逯贵祯教授及硕士研究生关健,最近完成了一篇英文论文“Superluminal and Negative Group Velocity in the Electromagnetic Wave Propagation”(“电磁波传播中的超光速群速和负群速”),今年6月在《Engineeting Science in China》(ESIC——中国工程院院刊英文版)上发表。文章的前半为理论研究——分析了产生群速超光速和负群速的条件;讨论了截止波导中消失波条件下的超光速群速和负群速。文章的后半报道了关于“超光速群速”的实验——据我们所知,这是国内的首例超光速实验。该实验采用同轴光子晶体(CPC)结构进行,获得了阻带中的超光速群速,V_g=(1.5~2.4)c。  相似文献   

6.
A.Einstein对量子力学(QM)的反对态度从1926年开始显露,1935年与B.Podolsky、N.Rosen联合发表论文时达到顶点,而EPR论文后来是从反面促进了科学的发展。该文以狭义相对论(SR)为思想基础,而SR和EPR都否定超光速的可能性。但QM允许超光速存在,并与研究超光速的前提即QM非局域性一致。1985年John Bell说,Bell不等式是分析EPR推论的产物,该推论说在EPR文章条件下不应存在超距作用;但那些条件导致QM预示的奇特相关性。Aspect实验的结果是在预料之中的,因为QM从未错过,现在知道即使在苛刻的条件下它也不会错;可以肯定实验证明了Einstein的观念站不住脚。Bell认为在进退两难的处境下可以回到Lorentz和Poincarè,他们的以太是一种特惠参考系,在其中事物可以比光快。Bell指出正是EPR给出了超光速的预期。……1992年以来有多个超光速实验成功的报道,有的以量子隧穿为基础,有的利用经典物理现象(如消失波、反常色散)。而在2008年,D.Salart等用处于纠缠态的相距18km的2个光子完成的实验证明其相互作用的速度比光速大一万倍以上,为104c~107c;可以说此实验对有关EPR的长期争论作了结论。过去25年来,量子超光速性是笔者的主要研究课题之一。1985年我们提出了量子势垒的等效电路模型;1991年我们最早指出截止波导中消失波模有负相速(vp0)和负群速(vg0)现象,笔者的专著《截止波导理论导论》获全国优秀科技著作奖。2003年我们用同轴光子晶体进行实验并观测到阻带中的超光速群速,为(1.5~2.4)c。2005年我们提出广义信息速度(General Information Velocity,GIV)和在2010年提出量子超光速性(Quantum Super-luminality,QS)两个概念,并建议改造现有的高能粒子加速器以寻找和发现超光速奇异电子。本文则较深刻地讨论了QS的若干问题,涉及微观粒子的速度定义、EPR思维与超光速研究的关系、量子纠缠态作用速度、量子隧穿的超光速性、负波速、Casimir效应的超光速性。文中指出Sommerfeld-Brillouin波速理论的意义和不足,用实验例说明量子光学(QO)方法与经典物理概念结合运用是重要的。自2000年以来的负群速实验常以某金属(如铯、钾、铷)的原子蒸汽状态作为受试对象,充分利用激光的高科技特性和手段,从而使之成为具有典型QO特征的现代物理实验,因而极不同于经典性质的物理实验。负群速不仅是超光速的特殊形态,而且普遍具有下述特征:输入脉冲进入媒质前,出口处即呈现输出脉冲峰,因而与经典因果性不同。虽然关于QS的知识和发现是丰富的和生动的,并且极有启发性,但它并不正面和直接地回答"物质、能量、信息能否以超光速传送"的问题。设计巧妙而有说服力的实验仍是科学家们的基本任务。  相似文献   

7.
A.Einstein对量子力学(QM)的反对态度从1926年开始显露,1935年与B.Podolsky、N.Rosen联合发表论文时达到顶点,而EPR论文后来是从反面促进了科学的发展。该文以狭义相对论(SR)为思想基础,而SR和EPR都否定超光速的可能性。但QM允许超光速存在,并与研究超光速的前提即QM非局域性一致。1985年John Bell说,Bell不等式是分析EPR推论的产物,该推论说在EPR文章条件下不应存在超距作用;但那些条件导致QM预示的奇特相关性。Aspect实验的结果是在预料之中的,因为QM从未错过,现在知道即使在苛刻的条件下它也不会错;可以肯定实验证明了Einstein的观念站不住脚。Bell认为在进退两难的处境下可以回到Lorentz和Poincarè,他们的以太是一种特惠参考系,在其中事物可以比光快。Bell指出正是EPR给出了超光速的预期。……1992年以来有多个超光速实验成功的报道,有的以量子隧穿为基础,有的利用经典物理现象(如消失波、反常色散)。而在2008年,D.Salart等用处于纠缠态的相距18km的2个光子完成的实验证明其相互作用的速度比光速大一万倍以上,为104c~107c;可以说此实验对有关EPR的长期争论作了结论。过去25年来,量子超光速性是笔者的主要研究课题之一。1985年我们提出了量子势垒的等效电路模型;1991年我们最早指出截止波导中消失波模有负相速(vp0)和负群速(vg0)现象,笔者的专著《截止波导理论导论》获全国优秀科技著作奖。2003年我们用同轴光子晶体进行实验并观测到阻带中的超光速群速,为(1.5~2.4)c。2005年我们提出广义信息速度(General Information Velocity,GIV)和在2010年提出量子超光速性(Quantum Super-luminality,QS)两个概念,并建议改造现有的高能粒子加速器以寻找和发现超光速奇异电子。本文则较深刻地讨论了QS的若干问题,涉及微观粒子的速度定义、EPR思维与超光速研究的关系、量子纠缠态作用速度、量子隧穿的超光速性、负波速、Casimir效应的超光速性。文中指出Sommerfeld-Brillouin波速理论的意义和不足,用实验例说明量子光学(QO)方法与经典物理概念结合运用是重要的。自2000年以来的负群速实验常以某金属(如铯、钾、铷)的原子蒸汽状态作为受试对象,充分利用激光的高科技特性和手段,从而使之成为具有典型QO特征的现代物理实验,因而极不同于经典性质的物理实验。负群速不仅是超光速的特殊形态,而且普遍具有下述特征:输入脉冲进入媒质前,出口处即呈现输出脉冲峰,因而与经典因果性不同。虽然关于QS的知识和发现是丰富的和生动的,并且极有启发性,但它并不正面和直接地回答"物质、能量、信息能否以超光速传送"的问题。设计巧妙而有说服力的实验仍是科学家们的基本任务。  相似文献   

8.
Bessel波束具有奇异的特性,例如在传播中不发生衍射,而且实验测量证明其群速比光速c要大。对其超光速运动可以用球面波前在对称轴上的干涉作简单解释。2006年有研究人员指出,不仅通常的实宗量Bessel波,虚宗量修正Bessel波也有群速超光速现象。  相似文献   

9.
用经典力学分析有质有形物体的运动时,速度是矢量,负速度表示反向运动.但对无质无形的波的运动而言,速度可为标量,不能说负速度仅代表流向反了过来.该怎样理解这种现象的含意?对负波速(NWV)而言,例如当脉冲通过特定媒质时具有负群速(NGV),数值为c/ng(ng<0),它不仅比脉冲通过真空时的速度(光速c)快,而且快到进入媒质前就离开了媒质.由此本文提出了“电磁波负性运动”的概念,并将其与简单的“反向运动”相区别.我们必须接受D'Alembert方程的超前解,理解负速度概念.可以说,自然以她的真实和丰富给我们上了一课,今后她还将继续教导我们.事物的二元性是世界的本质.在现代物理学中,电磁参数成为负值或电磁波作负性运动均常有发生.物理参数为正或为负的本身是自然界对称性机制之一,对其作研究是探索客观规律的一个新途径.  相似文献   

10.
就物理光学方面的一系列理论和实验研究,如GoosHnchen位移、FTIR现象、负折射率、太赫超光速实验、光子静质量测量等做了评述和讨论。指出近年来的研究显示了消失波现象的重要性,例如消失波可造成超光速传播,且常有新方法和新测量结果;介绍了物理光学在相关领域的技术创新和应用实例;讨论了光子有静止质量的可能性及光频标准和光频测量的历史和新的进展  相似文献   

11.
1Introduction InthestudyoftheEMwavepropagationintheearly 1 9thcentury,thephasevelocityofwavesisbroughtforward ,whichisdefinedasthepropagationvelocityofthephaseofharmonicwavesandcanbewrittenas:Vp =ω β (1 )Whereβisaphaseconstant.In 1 839,W .R .Hamiltonbroughtforwardaconceptofgroupvelocitytoexplainsomeofsuchcomplexphenomenaastwowavesofdifferentfrequen ciespropagatetogetherinonemedium .In 1 877,Rayleighgavethedefinitionofthegroupvelocityinhisfamousbook“TheoryofSound”andthegroupvelocityis…  相似文献   

12.
从当前新材料的开发和材料科学发展向多功能、小型化、复合化、低成本制备等要求出发, 并就现有高性能陶瓷材料的基本性能和材料制备工艺上的优缺点进行了分析;简要介绍了碳化硅(SiC)陶瓷、 添加Nd的钇铝石榴子石(Nd-YAG)陶瓷、掺有稀土的氮化硅(RE-Si3N4)陶瓷等几种具有结构和功能一体化高性能陶瓷材料的优良性能,可能的应用以及目前存在的问题,特别是在基础研究和制备科学上今后应予以关注的方面。  相似文献   

13.
Nikola Tesla是现代科技文明的创始人之一;他的标量波不但可用于能量和信息传输,而且非常有趣。如所周知无线电波和光波都是横波,但Tesla标量波更像电磁势在传播方向上的扩张和收缩。在电磁理论研究中,实验均证明了矢势和标势的物理实在性,这是对Tesla标量波理念的支持。我们已知像Aharonov-Bohm效应和量子纠缠态这类非力效应的情况,Tesla标量波也是这种效应。本文提出了Tesla波可能有超光速性的原因:首先是Aharonov-Bohm效应具有量子力学非局域性;其次是类消失态的近场效应;因此Tesla纵波以超光速传播是可能的。但还应做更多的实验。  相似文献   

14.
讨论了近场的两类基本电磁环境———束缚场与消失态;前者包含静态场(按r-3规律衰减)和感应场(按r-2规律衰减);后者包含消失平面波谱,当离源的距离增大时指数地急速下降。束缚场在本文中称为类消失场。近年来两者都发现了电磁波在自由空间以超光速传播的现象,实验上还进一步观察到负波速。由最近几年的实验,对束缚场而言结果并不支持普遍认为的以光速( v = c)迟滞传播的观点;根据对天线近区内无迟滞现象的观测,提供了束缚电磁场的非局域性的实验证据,有的实验甚至达到了高度超光速,即v≥10c。非局域性是一个量子力学概念,故束缚场的非局域特性可能在经典电磁学与量子力学之间建立紧密联系。在实际应用方面,论述了从辐射近场测量数据转换到辐射远场的技术,包括平面波谱( PWS)法和微波二端口网络散射矩阵法。此外还叙述了与近场微波显微镜发展的有关问题。但本文强调在近场测量中发现的新现象,给出了理论上的多个对偶关系。讨论了近场超光速现象的量子解释,认为应从理论上应用“消失态是虚光子”的思想。本文提出应当重视的一个研究领域是:在不使用反常色散和LHM超材料的近场条件下获得的在自由空间的内向波。最后指出了使用环天线做进一步实验的必要性。  相似文献   

15.
Experiments on ring wave packet generated by water drop   总被引:1,自引:0,他引:1  
The propagation of ring wave packet (composed of carrier waves modulated by an envelope) generated by a water drop was studied experimentally. It is a localized wave packet propagating with constant velocity and low diffusion. The wavelength, the amplitude and the waveform of the carrier waves, the velocity of the carrier waves and the packet have been measured. The measured wavelength λa of the carrier waves and the measured group velocity Cge of the packet are near the minimum point of the dispersion curve of group velocity, which may be the main reason why the packet can propagate with low diffusion.  相似文献   

16.
1947年Goos和H?nchen发现,当电磁波束在玻璃/空气界面全反射时,在返回玻璃内部时有一项发生在入射面内的纵向位移;我们称之为正位移。实际上,稳态相位法的计算表明,位移可以为正、为零,甚至为负。由于界面上的表面波可以是前向型的和后向型的,携带的功率向着不同方向;故当激发起后向型表面波时就可获得入射波束的负位移。在多层结构中,当入射波束波矢的切向分量与表面波传播常数一致时,会发生类谐振现象并导致位移增大。〈br〉 在一般情况下,当光束入射到金属表面,TM极化时GHS为负,并且绝对值比TE极化时大得多。但我们在微波的实验研究表明,在使用金属时可以在TE极化时发生负位移。实验时在全反射界面处为纳米级金属膜,是厚度30nm和60nm的铝膜,它蒸镀在厚18μm聚乙烯膜上。实验还发现,当改变入射角θ1并使之达到约qθ1c(θ1c为全反射临界角,q&gt;1)出现类谐振现象,GHS的绝对值可达(5~7)cm。目前尚缺少对这些结果的理论解释。  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号