首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neutrophil leukocytes have a pivotal function in innate immunity. Dogma dictates that the lethal blow is delivered to microbes by reactive oxygen species (ROS) and halogens, products of the NADPH oxidase, whose impairment causes immunodeficiency. However, recent evidence indicates that the microbes might be killed by proteases, activated by the oxidase through the generation of a hypertonic, K+-rich and alkaline environment in the phagocytic vacuole. Here we show that K+ crosses the membrane through large-conductance Ca2+-activated K+ (BK(Ca)) channels. Specific inhibitors of these channels, iberiotoxin and paxilline, blocked oxidase-induced 86Rb+ fluxes and alkalinization of the phagocytic vacuole, whereas NS1619, a BK(Ca) channel opener, enhanced both. Characteristic outwardly rectifying K+ currents, reversibly inhibited by iberiotoxin, were demonstrated in neutrophils and eosinophils and the expression of the alpha-subunit of the BK channel was confirmed by western blotting. The channels were opened by the combination of membrane depolarization and elevated Ca2+ concentration, both consequences of oxidase activity. Remarkably, microbial killing and digestion were abolished when the BK(Ca) channel was blocked, revealing an essential and unexpected function for this K+ channel in the microbicidal process.  相似文献   

2.
The mechanisms for the production of hydrogen peroxide (H2O2) induced by abscisic acid (ABA) were investigated in suspension culture cells of tobacco BY-2 cells. The results showed that the immediate generation of H2O2, which was mainly derived from super-oxide dismutase-catalyzed dismutation of superoxide radical, was significantly induced by ABA. Furthermore, treatment of the cultured tobacco cells with ABA resulted in a time-dependent quick increase in plasma membrane (PM) NADPH oxidase activity, which coin- cided on time and magnitude with the elevation in ABA-induced accumulation of H2O2. Moreover, these enhanced effects were pro- nouncedly inhibited by two NADPH oxidase inhibitors, diphenylene iodonium and imidazole, suggesting that PM NADPH oxidase is involved in the rapid accumulation of H2O2 in cultured tobacco cells. In addition, analysis of the expression level of NtrbohD, a PM NADPH oxidase gene in tobacco, by RT-PCR and protein gel blot revealed that the gene at both mRNA and protein levels was upregulated by ABA, indicating that NtrbohD participates in the ABA-stimulated rapid production of H2O2 in tobacco culture cells. Taken together, these findings suggest that ABA induces the rapid accumulation of reactive oxygen species via NADPH oxidase in sus-pension culture cells of tobacco, and that NADPH oxidase and H2O2 appear to be important components in ABA signal transduction pathway in plants.  相似文献   

3.
Drought is a major threat to agricultural production. Plants synthesize the hormone abscisic acid (ABA) in response to drought, triggering a signalling cascade in guard cells that results in stomatal closure, thus reducing water loss. ABA triggers an increase in cytosolic calcium in guard cells ([Ca2+]cyt) that has been proposed to include Ca2+ influx across the plasma membrane. However, direct recordings of Ca2+ currents have been limited and the upstream activation mechanisms of plasma membrane Ca2+ channels remain unknown. Here we report activation of Ca2+-permeable channels in the plasma membrane of Arabidopsis guard cells by hydrogen peroxide. The H2O2-activated Ca2+ channels mediate both influx of Ca2+ in protoplasts and increases in [Ca2+]cyt in intact guard cells. ABA induces the production of H2O2 in guard cells. If H2O2 production is blocked, ABA-induced closure of stomata is inhibited. Moreover, activation of Ca2+ channels by H2O2 and ABA- and H2O2-induced stomatal closing are disrupted in the recessive ABA-insensitive mutant gca2. These data indicate that ABA-induced H2O2 production and the H2O2-activated Ca2+ channels are important mechanisms for ABA-induced stomatal closing.  相似文献   

4.
Reactive oxygen species produced by NADPH oxidase regulate plant cell growth   总被引:70,自引:0,他引:70  
Cell expansion is a central process in plant morphogenesis, and the elongation of roots and root hairs is essential for uptake of minerals and water from the soil. Ca2+ influx from the extracellular store is required for (and sets the rates of) cell elongation in roots. Arabidopsis thaliana rhd2 mutants are defective in Ca2+ uptake and consequently cell expansion is compromised--rhd2 mutants have short root hairs and stunted roots. To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS). We show that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants. Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system. This indicates that NADPH oxidases control development by making ROS that regulate plant cell expansion through the activation of Ca2+ channels.  相似文献   

5.
P物质对大鼠星状神经节细胞的除极化   总被引:1,自引:0,他引:1       下载免费PDF全文
莫宁 《广西科学》1999,6(1):44-46
应用细胞内生物电记录技术,观察神经肽P物质(SP)对大鼠星状神经节细胞的影响.SP在1 μmol~10 μmol或更高的浓度范围内,供试35个细胞, 有28个细胞发生膜除极反应.用低钙(0.25 mm)或用含河豚毒素(TTX,1 μmol)克氏液灌流神经节,不影响SP引起的除极反应的幅度和时程.SP引起除极反应的同时常伴有膜电阻增大.当膜电位增大时,除极化反应幅度变小,反转电位为-80 mV至-100 mV.研究表明,SP对部分星状神经节细胞具有兴奋作用,使通过这些细胞的信息传递增强;SP对细胞膜的除极作用是由于其引起细胞膜钾导降低所致.  相似文献   

6.
Faxén K  Gilderson G  Adelroth P  Brzezinski P 《Nature》2005,437(7056):286-289
In aerobic organisms, cellular respiration involves electron transfer to oxygen through a series of membrane-bound protein complexes. The process maintains a transmembrane electrochemical proton gradient that is used, for example, in the synthesis of ATP. In mitochondria and many bacteria, the last enzyme complex in the electron transfer chain is cytochrome c oxidase (CytcO), which catalyses the four-electron reduction of O2 to H2O using electrons delivered by a water-soluble donor, cytochrome c. The electron transfer through CytcO, accompanied by proton uptake to form H2O drives the physical movement (pumping) of four protons across the membrane per reduced O2. So far, the molecular mechanism of such proton pumping driven by electron transfer has not been determined in any biological system. Here we show that proton pumping in CytcO is mechanistically coupled to proton transfer to O2 at the catalytic site, rather than to internal electron transfer. This scenario suggests a principle by which redox-driven proton pumps might operate and puts considerable constraints on possible molecular mechanisms by which CytcO translocates protons.  相似文献   

7.
8.
Ramsey IS  Moran MM  Chong JA  Clapham DE 《Nature》2006,440(7088):1213-1216
Voltage changes across the cell membrane control the gating of many cation-selective ion channels. Conserved from bacteria to humans, the voltage-gated-ligand superfamily of ion channels are encoded as polypeptide chains of six transmembrane-spanning segments (S1-S6). S1-S4 functions as a self-contained voltage-sensing domain (VSD), in essence a positively charged lever that moves in response to voltage changes. The VSD 'ligand' transmits force via a linker to the S5-S6 pore domain 'receptor', thereby opening or closing the channel. The ascidian VSD protein Ci-VSP gates a phosphatase activity rather than a channel pore, indicating that VSDs function independently of ion channels. Here we describe a mammalian VSD protein (H(V)1) that lacks a discernible pore domain but is sufficient for expression of a voltage-sensitive proton-selective ion channel activity. H(v)1 currents are activated at depolarizing voltages, sensitive to the transmembrane pH gradient, H+-selective, and Zn2+-sensitive. Mutagenesis of H(v)1 identified three arginine residues in S4 that regulate channel gating and two histidine residues that are required for extracellular inhibition of H(v)1 by Zn2+. H(v)1 is expressed in immune tissues and manifests the characteristic properties of native proton conductances (G(vH+)). In phagocytic leukocytes, G(vH+) are required to support the oxidative burst that underlies microbial killing by the innate immune system. The data presented here identify H(v)1 as a long-sought voltage-gated H+ channel and establish H(v)1 as the founding member of a family of mammalian VSD proteins.  相似文献   

9.
Belevich I  Verkhovsky MI  Wikström M 《Nature》2006,440(7085):829-832
Electron transfer in cell respiration is coupled to proton translocation across mitochondrial and bacterial membranes, which is a primary event of biological energy transduction. The resulting electrochemical proton gradient is used to power energy-requiring reactions, such as ATP synthesis. Cytochrome c oxidase is a key component of the respiratory chain, which harnesses dioxygen as a sink for electrons and links O2 reduction to proton pumping. Electrons from cytochrome c are transferred sequentially to the O2 reduction site of cytochrome c oxidase via two other metal centres, Cu(A) and haem a, and this is coupled to vectorial proton transfer across the membrane by a hitherto unknown mechanism. On the basis of the kinetics of proton uptake and release on the two aqueous sides of the membrane, it was recently suggested that proton pumping by cytochrome c oxidase is not mechanistically coupled to internal electron transfer. Here we have monitored translocation of electrical charge equivalents as well as electron transfer within cytochrome c oxidase in real time. The results show that electron transfer from haem a to the O2 reduction site initiates the proton pump mechanism by being kinetically linked to an internal vectorial proton transfer. This reaction drives the proton pump and occurs before relaxation steps in which protons are taken up from the aqueous space on one side of the membrane and released on the other.  相似文献   

10.
Wang GX  Poo MM 《Nature》2005,434(7035):898-904
Ion channels formed by the TRP (transient receptor potential) superfamily of proteins act as sensors for temperature, osmolarity, mechanical stress and taste. The growth cones of developing axons are responsible for sensing extracellular guidance factors, many of which trigger Ca2+ influx at the growth cone; however, the identity of the ion channels involved remains to be clarified. Here, we report that TRP-like channel activity exists in the growth cones of cultured Xenopus neurons and can be modulated by exposure to netrin-1 and brain-derived neurotrophic factor, two chemoattractants for axon guidance. Whole-cell recording from growth cones showed that netrin-1 induced a membrane depolarization, part of which remained after all major voltage-dependent channels were blocked. Furthermore, the membrane depolarization was sensitive to blockers of TRP channels. Pharmacological blockade of putative TRP currents or downregulation of Xenopus TRP-1 (xTRPC1) expression with a specific morpholino oligonucleotide abolished the growth-cone turning and Ca2+ elevation induced by a netrin-1 gradient. Thus, TRPC currents reflect early events in the growth cone's detection of some extracellular guidance signals, resulting in membrane depolarization and cytoplasmic Ca2+ elevation that mediates the turning of growth cones.  相似文献   

11.
莫宁  王鲁  陈家欢  陈美芳 《广西科学》1997,4(4):306-308
应用细胞内生物电记录方法,观察神经肽P物质(SP)对大鼠星状神经节能细胞的影响,用灌流或用加压向细胞周围施加SP可使部分细胞发生膜除极反应,用低钙或用含河豚毒素克氏液灌流神经节,并不影响SP引起的除极反应的幅度和时程。SP引起除极反应的同时常伴有膜电阻增大,当膜电位增大时,除极化反应幅度变小,反转电位为-80mV至-100mV,研究表明,SP对部分星状神经节细胞具有直接兴奋作用,并且SP对细胞膜的  相似文献   

12.
G L Westbrook  M L Mayer 《Nature》1987,328(6131):640-643
NMDA (N-methyl-D-aspartate) receptors serve as modulators of synaptic transmission in the mammalian central nervous system (CNS) with both short-term and long-lasting effects. Divalent cations are pivotal in determining this behaviour in that Mg2+ blocks the ion channel in a voltage-dependent manner, and Ca2+ permeates NMDA channels. Zn2+ could also modulate neuronal excitability because it is present at high concentrations in brain, especially the synaptic vesicles of mossy fibers in the hippocampus and is released with neuronal activity. Both proconvulsant and depressant actions of Zn2+ have been reported. We have found that zinc is a potent non-competitive antagonist of NMDA responses on cultured hippocampal neurons. Unlike Mg2+, the effect of Zn2+ is not voltage-sensitive between -40 and +60 mV, suggesting that Zn2+ and Mg2+ act at distinct sites. In addition, we have found that Zn2+ antagonizes responses to the inhibitory transmitter GABA (gamma-aminobutyric acid). Our results provide evidence for an additional metal-binding site on the NMDA receptor channel, and suggest that Zn2+ may regulate both excitatory and inhibitory synaptic transmission in the hippocampus.  相似文献   

13.
Y Maruyama  D V Gallacher  O H Petersen 《Nature》1983,302(5911):827-829
Nervous or hormonal stimulation of many exocrine glands evokes release of cellular K+ (ref. 1), as originally demonstrated in mammalian salivary glands2,3, and is associated with a marked increase in membrane conductance1,4,5. We now demonstrate directly, by using the patch-clamp technique6, the existence of a K+ channel with a large conductance localized in the baso-lateral plasma membranes of mouse and rat salivary gland acinar cells. The K+ channel has a conductance of approximately 250 pS in the presence of high K+ solutions on both sides of the membrane. Although mammalian exocrine glands are believed not to possess voltage-activated channels1,7, the probability of opening the salivary gland K+ channel was increased by membrane depolarization. The frequency of channel opening, particularly at higher membrane potentials, was increased markedly by elevating the internal ionized Ca2+ concentration, as previously shown for high-conductance K+ channels from cells of neural origin8-10. The Ca2+ and voltage-activated K+ channel explains the marked cellular K+ release that is characteristically observed when salivary glands are stimulated to secrete.  相似文献   

14.
通过溶液直接沉淀法制备了掺Al3+的亚微米氧化锌Zn(Al)O,利用XRD和SEM确定其晶体结构和形貌大小.采用Fenton/Co2+体系,在掺铝氧化锌存在和超声协同下进行降解亚甲基蓝的实验,研究溶液初始pH、H2O2浓度、反应温度、Zn(Al)O投加量、Co2+浓度、亚甲基蓝(MB)浓度等实验条件对MB降解率的影响,并对4种降解方法的效果进行比较. 结果表明:采用Fenton/Co2++Zn(Al)O+超声体系,在H2O2浓度为100 mmol/L,pH5~9,温度30~50C,Co2+浓度0.1~0.3 mmol/L,Zn(Al)O投加量1.0 g/L的条件下降解初始质量浓度达80 mg/L的MB溶液,自然光下超声1h后降解率高达72%. 对其降解机理进行了初步讨论.对掺铝氧化锌循环使用的研究发现,循环1次后降解率为68%, 2次下降到48%.在自然光下降解,该文合成的Zn(Al)O的降解率是P25(降解率约40%)的1.8倍.  相似文献   

15.
S Han  Y C Ching  D L Rousseau 《Nature》1990,348(6296):89-90
Cytochrome c oxidase catalyses the 4-electron reduction of dioxygen to water and translocates protons vectorially across the inner mitochondrial membrane. Proposed reaction pathways for the catalytic cycle of the O2 reduction are difficult to verify without knowing the structures of the intermediates, but we now have such information for the catalytic intermediates in the first steps of the reaction of O2 with cytochrome c oxidase from resonance Raman spectroscopy, a technique that enables iron-ligand stretching modes to be identified. Here we report on two more key intermediates: a ferryl-oxo (Fe4 = O2-) and a ferric-hydroxy (Fe3+--OH-) intermediate at the level of 3- and 4-electron reduction, respectively. We identified these intermediates by their characteristic iron-oxygen stretching frequencies (786 cm-1 for Fe4+ = O2-, and 450 cm-1 for Fe3+ -- OH-) and oxygen and deuterium isotope shifts. The oxo atom in the ferryl intermediate is hydrogen-bonded and the iron-oxygen bond in the hydroxy intermediate is anomalously weak. With the identification of the primary, ferryl and hydroxy intermediates, the predominant structures at almost all stages of O2 reduction are now known and the catalytic pathway can be described with more certainty.  相似文献   

16.
Czyzewski BK  Wang DN 《Nature》2012,483(7390):494-497
The hydrosulphide ion (HS(-)) and its undissociated form, hydrogen sulphide (H(2)S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H(2)S (ref. 4). The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD(+), which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H(2)S and HS(-) inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS(-) channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS(-) ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.  相似文献   

17.
M Wikstr?m 《Nature》1989,338(6218):776-778
Mitochondrial cytochrome oxidase is a functionally complex, membrane-bound respiratory enzyme which catalyses both the reduction of O2 to water and proton-pumping. During respiration, an exogenous donor, cytochrome c, donates four electrons to O2 bound at the bimetallic haem alpha 3 Fe-Cu centre within the enzyme. These four electron transfers are mediated by the enzyme's haem alpha and CuA redox centres and result in the translocation of four protons across the inner mitochondrial membrane. The molecular mechanism of proton translocation has not yet been delineated, however, and in the absence of direct experimental evidence all four electron transfers have been assumed to couple equally to proton-pumping. Here, I report the effects of proton-motive force and membrane potential on two equilibria involving intermediates of the bimetallic centre at different levels of O2 reduction. The results show that only two of the electron transfers, to the 'peroxy' and 'oxyferryl' intermediates of the bimetallic centre, are linked to proton translocation, a finding which strongly constrains candidate mechanisms for proton-pumping.  相似文献   

18.
利用物理吸附的方法将微过氧化物酶-11(MP-11)固定在多壁碳纳米管(MCNT)修饰的玻碳电极表面。研究发现:在pH=7.12磷酸盐缓冲溶液中,修饰电极上的MP-11发生了两电子一质子准可逆的氧化还原反应,式量电位E0’为-298mV(vs Ag/AgCl),峰电位差ΔEP为39mV。在该修饰电极上MP-11对氧气(O2)和过氧化氢(H2O2)都能进行催化还原,催化还原过程都是扩散控制的过程。而且在信噪比为3时,MP-11对H2O2的最低检出限是0.35mmol/L,表明MP-11在修饰电极上保持了自身的生物活性,该修饰电极有望在生物燃料电池和生物传感器中得到应用。  相似文献   

19.
E Carbone  H D Lux 《Nature》1984,310(5977):501-502
Calcium channels in excitable membranes are essential for many cellular functions. Recent analyses of the burst-firing mode of some vertebrate neurones suggest that changes in their functional state are controlled by a Ca conductance that is largely inactivated at resting membrane potentials (-50 to -60 mV), but becomes activated following a conditioning hyperpolarization of the cell membrane. Here, using chick and rat sensory neurones, we present evidence for a new type of Ca channel with time- and voltage-dependent properties which is probably responsible for the inactivation behaviour of the Ca conductance. At membrane potentials between -50 and +10 mV, openings of this channel last 3-6 ms and tend to occur in rapid succession. Inactivation of this channel is indicated by prolonged and eventually complete closures brought about by long-lasting depolarizing voltage steps. This channel coexists in isolated membrane patches with the more common Ca channel which is less sensitive to changes in holding potential and shows a considerably shorter average life time and smaller currents.  相似文献   

20.
Cloned neuronal IK(A) channels reopen during recovery from inactivation   总被引:10,自引:0,他引:10  
J P Ruppersberg  R Frank  O Pongs  M Stocker 《Nature》1991,353(6345):657-660
The kinetic behaviour and functional role of potassium ion (K+) channels mediating a fast-inactivating K+ current (IK(A)) has been widely discussed. Activating in the subthreshold range of excitation, IK(A) channels are assumed to reduce the excitatory effect of depolarizing membrane currents in a time-dependent manner. Here we report that IK(A) channels not only open in response to a depolarization but open again after repolarization of the membrane. Although the current in response to the depolarization is rapidly inactivating, the current elicited by repolarization declines slowly and produces long-lasting afterhyperpolarizations under current-clamp conditions. This implies an additional physiological role for IK(A) channels, particularly those that activate positive to the threshold of excitation. The underlying biophysical mechanism was studied by fast-application of peptides corresponding to the N-terminal end of the IK(A) channel proteins. It was found to be a voltage-dependent release of the inactivation gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号