首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 93 毫秒
1.
A rice psl1 (presenescing leaf) mutant was obtained from a japonica variety Zhonghua 11 via radiation of ^60Co-γ in M2 generation. Every leaf of the mutant began to wither after it reached the biggest length, while the leaves of the wild variety could keep green for 25--35 d. In this study, genetic analysis and gene mapping were carried out for the mutant identified. The SSR marker analysis showed that the mutant was controlled by a single recessive gene (psl1) located on chromosome 2. Fine mapping of the psl1 locus was conducted with 34 new STS markers developed around psl1 anchored region based on the sequence diversity between Nipponbare and 93-11. The psl1 was further mapped between two STS markers, STS2-19 and STS2-26, with genetic distances of 0.43 and 0.11 cM, respectively, while cosegregated with STS2-25. A BAC contig was found to span the psl1 locus, the region being delimited to 48 kb. This result was very useful for cloning of the psl1 gene.  相似文献   

2.
Fine mapping of a semidwarf gene sd-g in indica rice(Oryza sativa L.)   总被引:4,自引:0,他引:4  
The semidwarf gene sd-g which has been usedin indiea rice breeding in southern China is a new one, non-allelic to sd-1. To map sd-g, an F2 population derived fromthe cross between Xinguiaishuangai and 02428 was con-structed. The sd-g was roughly mapped between two mi-crosatellite markers RM440 and RM163, with genetic dis-tances of 0.5 and 2.5 cM, respectively. Then nine new poly-morphic microsatellite markers were developed in this region.The sd-g was further mapped between two microsatellitemarkers SSR5-1 and SSR5-51, with genetic distances of 0.1and 0.3 cM, respectively, while cosegregated with SSR418. ABAC contig was found to span the sd-g locus, the region be-ing delimited to 85 kb. This result was very useful for cloningof the sd-g gene.  相似文献   

3.
4.
Flowers, fruits and seeds are products of plant re- productive development and provide the important sources of foods for humans. Therefore, the moleculargenetic mechanisms of floral development have been ahotspot of research of plant developmental biology[1]. Rice is one of the most important staple food crops. Theoutcome of its reproductive development would determine the yield and quality of grains. Rice is also a model plantof cereals. Hence, the study of rice reproductivedevelopment, esp…  相似文献   

5.
Strong heterosis existed in the hybrid of the subspe-cies in rice[1,2]. However, the partial sterility of the hy-brid hinders the utilization of the heterosis[3,4]. Ikehashi et al.[5,6] considered the female gamete as the main ste-rility form and proposed…  相似文献   

6.
A rice male-sterile mutant OsMS-L of japonica cultivar 9522 background, was obtained in M4 population treated with ^60Co γ-Ray. Genetic analysis indicated that the male.sterile phenotype was controlled by a single recessive gene. Results of tissue section showed that at microspore stage, OsMS-L tapetum was retarded. Then tapetal calls expanded and microspores degenerated. No matured pollens were observed in OsMS-L anther locus. To map OsMS-L locus, an F2 population was constructed from the cross between the OsMS-L (japonica) and LongTeFu B(indica). Firstly, the OsMS-L locus was roughly mapped between two SSR markers, RM109 and RM7562 on chromosome 2. And then eleven polymorphic markers were developed for further fine fine-mapping. At last the OsMS-L locus was mapped between the two lnDel markers, Lhsl0 and Lhs6 with genetic distance of 0.4 cM, respectively. The region was delimited to 133 kb. All these results were useful for further cloning and functional analysis of OsMS-L.  相似文献   

7.
A rice initiation-type lesion mimic mutant (lmi) was identified, which was isolated from an indica rice Zhongxian 3037 through γ radiation mutagenesis. Trypan blue staining and sterile culture revealed that the mutant spontaneously developed lesions on the leaves in a developmentally regulated and light-dependent manner. Genetic analysis indicated that the lesion mimic trait was controlled by a single resessive locus. Using public molecular markers and an F2 population derived from lmi and 93-11, we mapped the lmi locus to the short arm of chromosome 8, nearby the centromere, between two SSR markers RM547 and RM331. The genetic distance was 1.2 and 3.2 cM, respectively. Then according to the public rice genomic sequence between the two SSR markers, lmi was further finely tagged by three CAPS markers: C4135-8, C4135-9 and C4135-10. And lmi locus was a co-segregated with marker C4135-10, providing a starting point for lmi gene cloning.  相似文献   

8.
Rice plant architecture is an important agronomic trait that affects the grain yield. To understand the molecular mechanism that controls plant architecture, a tillering dwarf mutant with darker-green leaves derived from an indica cultivar IR64 treated with EMS is characterized. The mutant, designated as tddl(t), is nonallelic to the known tiilering dwarf mutants. It is controlled by one recessive nuclear gene, TDDL(T), and grouped into the dn-type dwarfism according to Takeda's definition. The dwarfism of the mutant is independent of gibberellic acid based on the analyses of two GA-mediated processes. The independence of brassinosteroid (BR) and naphthal-3-acetic acid (NAA) of the tddl(t) mutant, together with the decreased size of parenchyma cells in the vascular bundle, indicates that the TDDL(7) gene might participate in another hormone pathway. TDDL(T) is fine mapped within an 85.51 kb region on the long arm of rice chromosome 4, where 20 ORFs are predicted by RiceGAAS (http://ricegaas.dna.affrc. go.jp/rgadb/). Further cloning of TDDL(T) will benefit both marker assisted selection (MAS) of plant architecture and dissection of the molecular mechanism underlying tillering dwarf in rice.  相似文献   

9.
Much attention has been paid to leaf shape of rice in the process of ideotype breeding[1]. Several authors have reported that the rolling of leaf in some degree helps keep it erect, consequently optimizing canopy light transmission condition, which is good for dry matter accumulation and for high yield[2―6]. Rice as a polymorphic crop has many types of vari- ety with different morphologies. In terms of leaf shape, different cultivars with rolling leaf have been identifiedin rice germplasm. Le…  相似文献   

10.
The shape and color of rice leaves are impor- tant agronomic traits that directly influence the proportion of sunlight energy utilization and ultimately affect the yield and quality. A new mutant exhibiting stable inheritance was identified as derived from ethyl methane sulfonate (EMS)-treated restorer Jinhui 10, tentatively named as narrow and striped leaf 1 (nsll). The nsll displayed pale white leaves at the seeding stage and then white striped leaves in parallel to the main vein at the jointing stage. Meanwhile, its leaf blades are significantly narrower than the control group of Jinhui 10. The chloroplast structures of cells in the white striped area of the nsll mutant break down, and the photosynthetic pigments are significantly lower than that of the wild type. Moreover, fluorescence parameters, such as Fo, Fv/Fm, ФpsⅡ, qP, and ETR, in the nsll mutant are significantly lower than those of the wild type, and the photosynthetic efficiency is also significantly decreased. These changes in leaf color and shape, together with physiological changes in the nsll, result in smaller plant height and a decrease in the most important agro- nomic traits, such as the number of grains per panicle, grain weight, etc. Genetic analysis shows that the narrow and striped traits of the nsll mutant are controlled by a single recessive nuclear gene, which is located between InDel 16 and InDel 12 in chromosome 3. The physical distance is 204 kb. So far, no similar genes of such leaf color and shape in this area have been reported, This study has laid asolid foundation for the gene cloning and function analysis of NSL 1.  相似文献   

11.
通过研究除草剂Basta对水稻品种台安 1号愈伤组织生长的影响 ,确定了能抑制愈伤组织生长的最低剂量 ;在此基础上将抗菌肽B基因 (cecropinB)和bar基因导入了台安 1号基因组。除草剂抗性鉴定结果表明 :转基因植株表现出对Basta较强的抗性 .  相似文献   

12.
VELOPING“TWO-LINE”HYBRID RICE.THE POLLEN FERTILITY OF TGMS IS REGULATED BY THE TEMPERATURE OF ENVIRONMENT.THE POLLENS OF TGMS LINES ARE STERILE WHEN THE ENVI-RONMENT TEMPERATURE IS ABOVE A CRITICAL POINT,BUT FERTILE BELOW THIS POINT.SO FAR,A NUMBER OF T…  相似文献   

13.
Southern blot analysis indicated that mtlD gene (encoding mannitol-1-phosphate dehydrogenase) and gutD gene (encoding glucitol-6-phosphate dehydrogenase) had been integrated into the rice genome mediated by Agrobacterium tumefaciens LBA4404(pBIGM). The expression of the above two genes in transgenic rice plants was demonstrated by Northern blot analysis and enzymatic activity assay. Analysis of sugar alcohol showed that transgenic rice plants could produce and accumulate mannitol and sorbitol. The salt tolerance of transgenic plants was much higher than that of their controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号