首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The lysosomal storage disorders encompass more than 40 distinct diseases, most of which are caused by the deficient activity of a lysosomal hydrolase leading to the progressive, intralysosomal accumulation of substrates such as sphingolipids, mucopolysaccharides, and oligosaccharides. Here, we primarily focus on Gaucher disease, one of the most prevalent lysosomal storage disorders, which is caused by an impaired activity of glucocerebrosidase, resulting in the accumulation of the glycosphingolipid glucosylceramide in the lysosomes. Enzyme replacement and substrate reduction therapies have proven effective for Gaucher disease cases without central nervous system involvement. We discuss the promise of chemical chaperone therapy to complement established therapeutic strategies for Gaucher disease. Chemical chaperones are small molecules that bind to the active site of glucocerebrosidase variants stabilizing their threedimensional structure in the endoplasmic reticulum, likely preventing their endoplasmic reticulum-associated degradation and allowing their proper trafficking to the lysosome where they can degrade accumulated substrate to effectively ameliorate Gaucher disease. Received 22 September 2005; received after revision 15 December 2006; accepted 2 February 2006  相似文献   

2.
Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.  相似文献   

3.
Gaucher disease is the most common glycolipid storage disease. Type I, the most common form of the disease, is characterised by enlargement of the liver, and spleen and bone lesions. In the rare type II and type III forms of the disorder, central nervous system involvement is present as well. The disease results from a deficiency of the lysosomal enzyme glucocerebrosidase, which is needed for the enzymatic degradation of complex lipids, globosides and gangliosides. In the absence of sufficient glucocerebrosidase activity, the catabolic product glucocerebroside accumulates.  相似文献   

4.
CLN3 is an endosomal/lysosomal transmembrane protein mutated in classical juvenile onset neuronal ceroid lipofuscinosis, a fatal inherited neurodegenerative lysosomal storage disorder. The function of CLN3 in endosomal/lysosomal events has remained elusive due to poor understanding of its interactions in these compartments. It has previously been shown that the localisation of late endosomal/lysosomal compartments is disturbed in cells expressing the most common disease-associated CLN3 mutant, CLN3?ex7-8 (c.462-677del). We report here that a protracted disease causing mutant, CLN3E295K, affects the properties of late endocytic compartments, since over-expression of the CLN3E295K mutant protein in HeLa cells induced relocalisation of Rab7 and a perinuclear clustering of late endosomes/lysosomes. In addition to the previously reported disturbances in the endocytic pathway, we now show that the anterograde transport of late endosomal/lysosomal compartments is affected in CLN3 deficiency. CLN3 interacted with motor components driving both plus and minus end microtubular trafficking: tubulin, dynactin, dynein and kinesin-2. Most importantly, CLN3 was found to interact directly with active, guanosine-5'-triphosphate (GTP)-bound Rab7 and with the Rab7-interacting lysosomal protein (RILP) that anchors the dynein motor. The data presented in this study provide novel insights into the role of CLN3 in late endosomal/lysosomal membrane transport.  相似文献   

5.
The Rh (Rhesus) genes encode a family of conserved proteins that share a structural fold of 12 transmembrane helices with members of the major facilitator superfamily. Interest in this family has arisen from the discovery of Rh factor’s involvement in hemolytic disease in the fetus and newborn, and of its homologs widely expressed in epithelial tissues. The Rh factor and Rh-associated glycoprotein (RhAG), with epithelial cousins RhBG and RhCG, form four subgroups conferring upon vertebrates a genealogical commonality. The past decade has heralded significant advances in understanding the phylogenetics, allelic diversity, crystal structure, and biological function of Rh proteins. This review describes recent progress on this family and the molecular insights gleaned from its gene evolution, membrane biology, and disease association. The focus is on its long evolutionary history and surprising structural conservation from prokaryotes to humans, pointing to the importance of its functional role, related to but distinct from ammonium transport proteins.  相似文献   

6.
The extra-intestinal manifestations of celiac disease (CD), including ataxia and peripheral neuropathy, are increasingly being recognized as the presenting symptoms of this autoimmune disease. Although there is a greater understanding of the pathogenesis of the intestinal lesions in CD the mechanisms behind the neurologic manifestations of CD have not been elucidated. In this article, the authors review the cellular and molecular mechanisms behind the histopathologic changes in the intestine, discuss the presentation and characteristics of neurologic manifestations of CD, review the data on the mechanisms behind these manifestations, and discuss the diagnosis and treatment of CD. Molecular mimicry and intermolecular help may play a role in the development of neurologic complications.Received 11 March 2004; received after revision 29 October 2004; accepted 12 November 2004  相似文献   

7.
We have proposed a chemical chaperone therapy for lysosomal diseases, based on a paradoxical phenomenon that an exogenous competitive inhibitor of low molecular weight stabilizes the target mutant molecule and restores its catalytic activity as a molecular chaperone intracellularly. After Fabry disease experiments, we investigated a new synthetic chaperone compound N-octyl-4-epi-β-valienamine (NOEV) in a GM1-gangliosidosis model mice. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced the substrate storage, and clinically improved neurological deterioration. We hope that chemical chaperone therapy will prove useful for some patients with GM1-gangliosidosis and potentially other lysosomal storage diseases with central nervous system involvement. Received 10 October 2007; received after revision 31 October 2007; accepted 6 November 2007  相似文献   

8.
The DNA sequence largely defines gene expression and phenotype. However, it is becoming increasingly clear that an additional chromatin-based regulatory network imparts both stability and plasticity to genome output, modifying phenotype independently of the genetic blueprint. Indeed, alterations in this “epigenetic” control layer underlie, at least in part, the reason for monozygotic twins being discordant for disease. Functionally, this regulatory layer comprises post-translational modifications of DNA and histones, as well as small and large noncoding RNAs. Together these regulate gene expression by changing chromatin organization and DNA accessibility. Successive technological advances over the past decade have enabled researchers to map the chromatin state with increasing accuracy and comprehensiveness, catapulting genetic research into a genome-wide era. Here, aiming particularly at the genomics/epigenomics newcomer, we review the epigenetic basis that has helped drive the technological shift and how this progress is shaping our understanding of complex disease.  相似文献   

9.
Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.  相似文献   

10.
The field of Parkinsons disease pathogenesis is rapidly evolving from the one of a monolithic and obscure entity into the one of a complex scenario with several known molecular players. The ongoing systematic exploration of the genome holds great promise for the identification of the genetic factors conferring susceptibility to the common non-Mendelian forms of this disease. However, most of the progress of the last 5 years has come from the successful mapping and cloning of genes responsible for rare Mendelian variants of Parkinsons disease. These discoveries are providing tremendous help in understanding the molecular mechanisms of this devastating disease. Here we review the genetics of the monogenic forms of Parkinsons disease. Moreover, we focus on the mechanisms of disease caused by -synuclein and parkin mutations, and the implications of this growing body of knowledge for understanding the pathogenesis of the common forms of the disease. Received 10 March 2004; received after revision 26 April 2004; accepted 29 April 2004  相似文献   

11.
Lysosomal enzymes are subjected to a number of modifications including carbohydrate restructuring and proteolytic maturation. Some of these reactions support lysosomal targeting, others are necessary for activation or keeping the enzyme inactive before being segregated, while still others may be adventitious. The non-segregated fraction of the enzyme is secreted and can be isolated from the medium. It is considered that the secreted lysosomal enzymes fulfill certain physiological and pathophysiological roles. By comparing the secreted and the intracellular enzymes it is possible to distinguish between the reactions that occur before and after the segregation. In this review the reactions that may influence the segregation are referred to as the early processing and those characteristic for the enzymes isolated from lysosomal compartments as the late processing. The early processing is characterized mainly by modifications of carbohydrate side chains. In the late processing, proteolytic fragmentation represents the most conspicuous changes. The review focuses on the compartmentation of the reactions and the proteolytic fragmentation of lysosomal enzyme precursors. While a plethora of proteolytic reactions are involved, our knowledge of the proteinases responsible for the particular maturation reactions remains very limited. The review points also to work with cells from patients affected with lysosomal storage disorders, which contributed to our understanding of the lysosomal apparatus.  相似文献   

12.
A Hasilik 《Experientia》1992,48(2):130-151
Lysosomal enzymes are subjected to a number of modifications including carbohydrate restructuring and proteolytic maturation. Some of these reactions support lysosomal targeting, others are necessary for activation or keeping the enzyme inactive before being segregated, while still others may be adventitious. The non-segregated fraction of the enzyme is secreted and can be isolated from the medium. It is considered that the secreted lysosomal enzymes fulfill certain physiological and pathophysiological roles. By comparing the secreted and the intracellular enzymes it is possible to distinguish between the reactions that occur before and after the segregation. In this review the reactions that may influence the segregation are referred to as the early processing and those characteristic for the enzymes isolated from lysosomal compartments as the late processing. The early processing is characterized mainly by modifications of carbohydrate side chains. In the late processing, proteolytic fragmentation represents the most conspicuous changes. The review focuses on the compartmentation of the reactions and the proteolytic fragmentation of lysosomal enzyme precursors. While a plethora of proteolytic reactions are involved, our knowledge of the proteinases responsible for the particular maturation reactions remains very limited. The review points also to work with cells from patients affected with lysosomal storage disorders, which contributed to our understanding of the lysosomal apparatus.  相似文献   

13.
The role of inflammation in sporadic and familial Parkinson’s disease   总被引:1,自引:1,他引:0  
The etiology of Parkinson’s disease (PD) is complex and most likely involves numerous environmental and heritable risk factors. Interestingly, many genetic variants, which have been linked to familial forms of PD or identified as strong risk factors, also play a critical role in modulating inflammatory responses. There has been considerable debate in the field as to whether inflammation is a driving force in neurodegeneration or simply represents a response to neuronal death. One emerging hypothesis is that inflammation plays a critical role in the early phases of neurodegeneration. In this review, we will discuss emerging aspects of both innate and adaptive immunity in the context of the pathogenesis of PD. We will highlight recent data from genetic and functional studies that strongly support the theory that genetic susceptibility plays an important role in modulating immune pathways and inflammatory reactions, which may precede and initiate neuronal dysfunction and subsequent neurodegeneration. A detailed understanding of such cellular and molecular inflammatory pathways is crucial to uncover pathogenic mechanisms linking sporadic and hereditary PD and devise tailored neuroprotective interventions.  相似文献   

14.
Protein misfolding under stressful environmental conditions cause several cellular problems owing to the disturbed cellular protein homeostasis, which may further lead to neurological disorders like Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyloid lateral sclerosis and Huntington disease (HD). The presence of cellular defense mechanisms like molecular chaperones and proteasomal degradation systems prevent protein misfolding and aggregation. Molecular chaperones plays primary role in preventing protein misfolding by mediating proper native folding, unfolding and refolding of the polypeptides along with vast number of cellular functions. In past few years, the understanding of molecular chaperone mechanisms has been expanded enormously although implementation to prevent protein aggregation diseases is still deficient. We in this review evaluated major classes of molecular chaperones and their mechanisms relevant for preventing protein aggregation, specific case of α-synuclein aggregation. We also evaluate the molecular chaperone function as a novel therapeutic approach and the chaperone inhibitors or activators as small molecular drug targets.  相似文献   

15.
Dysfunction of the mitochondrial respiratory chain has been recognised as a cause of human disease for over 30 years. Advances in the past 10 years have led to a better understanding of the genetics and molecular pathogenesis of many of these disorders. Over 100 primary defects in mitochondrial DNA (mtDNA) are now implicated in the pathogenesis of a group of disorders which are collectively known as the mitochondrial encephalomyopathies, and which most frequently involve skeletal muscle and/or the central nervous system. Although impaired oxidative phosphorylation is likely to be the final common pathway leading to the cellular dysfunction associated with such mtDNA mutations, the complex relationship between genotype and phenotype remains largely unexplained. Most of the genes which encode the respiratory chain reside in the nucleus, yet only five nuclear genes have been implicated in human respiratory chain diseases. There is evidence that respiratory chain dysfunction is present in common neurological diseases such as Parkinson's disease and Huntington's disease. The precise cause of this respiratory chain dysfunction and its relationship to the disease process are unclear. This review focuses upon respiratory chain disorders associated with primary defects in mtDNA.  相似文献   

16.
Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner's syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner's syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed.  相似文献   

17.
Defects in membrane trafficking and degradation are hallmarks of most, and maybe all, neurodegenerative disorders. Such defects typically result in the accumulation of undegraded proteins due to aberrant endosomal sorting, lysosomal degradation, or autophagy. The genetic or environmental cause of a specific disease may directly affect these membrane trafficking processes. Alternatively, changes in intracellular sorting and degradation can occur as cellular responses of degenerating neurons to unrelated primary defects such as insoluble protein aggregates or other neurotoxic insults. Importantly, altered membrane trafficking may contribute to the pathogenesis or indeed protect the neuron. The observation of dramatic changes to membrane trafficking thus comes with the challenging need to distinguish pathological from protective alterations. Here, we will review our current knowledge about the protective and destructive roles of membrane trafficking in neuronal maintenance and degeneration. In particular, we will first focus on the question of what type of membrane trafficking keeps healthy neurons alive in the first place. Next, we will discuss what alterations of membrane trafficking are known to occur in Alzheimer’s disease and other tauopathies, Parkinson’s disease, polyQ diseases, peripheral neuropathies, and lysosomal storage disorders. Combining the maintenance and degeneration viewpoints may yield insight into how to distinguish when membrane trafficking functions protectively or contributes to degeneration.  相似文献   

18.
Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter 2 (EAAT2) is primarily responsible for clearance of extracellular glutamate to prevent neuronal excitotoxicity and hyperexcitability. EAAT2 plays a critical role in regulation of synaptic activity and plasticity. In addition, EAAT2 has been implicated in the pathogenesis of many central nervous system disorders. In this review, we summarize current understanding of EAAT2, including structure, pharmacology, physiology, and functions, as well as disease relevancy, such as in stroke, Parkinson’s disease, epilepsy, amyotrophic lateral sclerosis, Alzheimer’s disease, major depressive disorder, and addiction. A large number of studies have demonstrated that up-regulation of EAAT2 protein provides significant beneficial effects in many disease models suggesting EAAT2 activation is a promising therapeutic approach. Several EAAT2 activators have been identified. Further understanding of EAAT2 regulatory mechanisms could improve development of drug-like compounds that spatiotemporally regulate EAAT2.  相似文献   

19.
Pelizaeus-Merzbacher disease (PMD) and the allelic spastic paraplegia type 2 (SPG2) arise from mutations in the X-linked gene encoding myelin proteolipid protein (PLP). Analysis of mutations affecting PLP, the major protein in central nervous system myelin, has revealed previously unsuspected roles for myelinating glia in maintaining the integrity of the nervous system. The disease spectrum for PMD and SPG2 is extraordinarily broad and can be best understood by accounting not only for the wide range of mutations that can occur but also for the effects of PLP1 mutations on both cell autonomous and non-cell autonomous processes in myelinating cells. Appreciating the wide range of genetic and cellular effects of PLP1 mutations is important for patient and family counseling, understanding disease pathogenesis, and, ultimately, for developing future disease-specific therapies. Received 24 April 2006; received after revision 3 July 2006; accepted 9 October 2006  相似文献   

20.
Molecular targets of glioma invasion   总被引:9,自引:1,他引:8  
Glioblastoma multiforme is the most common and lethal primary malignant brain tumor. Although considerable progress has been made in technical proficiencies of surgical and radiation treatment for brain tumor patients, the impact of these advances on clinical outcome has been disappointing, with median survival time not exceeding 15 months. Over the last 30 years, no significant increase in survival of patients suffering from this disease has been achieved. A fundamental source of the management challenge presented in glioma patients is the insidious propensity of tumor invasion into distant brain tissue. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure and chemotherapy. Recent improved understanding of biochemical and molecular determinants of glioma cell invasion provide valuable insight into the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. These findings are moving forward to translational research and clinical trials as novel antiglioma therapies. Received 25 July 2006; received after revision 27 October 2006; accepted 22 November 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号