共查询到18条相似文献,搜索用时 62 毫秒
1.
基于小波域马尔可夫先验模型的图像去噪方法 总被引:1,自引:2,他引:1
提出了一种基于各向异性马尔可夫随机场(Markovrandomfield,MRF)先验概率模型的图像去噪方法。该方法利用图像小波子带的方向性特点以及小波系数尺度内和尺度间的相关性,将小波系数的分布特征建模为一种各向异性MRF先验概率模型。通过在贝叶斯框架中采用这种先验概率模型可以得到一种具有空间自适应性的贝叶斯萎缩函数。利用这种萎缩函数可以实现对小波系数的修正。实验结果表明利用该方法进行图像去噪能够取得良好的效果,同时可以有效地保留图像的细节。 相似文献
2.
基于融合策略的非下采样Contourlet域SAR图像去噪与仿真分析 总被引:1,自引:0,他引:1
传统的SAR图像去噪方法仅考虑乘性噪声,而忽略其中的加性成分。根据图像统计特性提出加性和乘性复合模型,对图像施加非下采样Contourlet变换分解策略,然后在变换域引入融合策略以完成最终的去噪。仿真分析表明:采用该新算法后的视觉效果和客观衡量指标都比较理想。 相似文献
3.
基于小波分解的贝叶斯SAR图像去斑方法 总被引:1,自引:1,他引:1
提出了一个新的有效的基于小波变换的SAR图像去斑方法。尽管小波分解具有去除相关性的作用,但是图像中边缘等几何结构特征仍然存在,因此本文引入一个几何先验模型,结合噪声和有用信号的条件分布进行贝叶斯估计,得到每一系数作为有用信号的后验概率,以之作为修正因子修正小波系数,获得了满意的去斑效果。与现有的去斑方法的主要的不同之处在于使用了噪声和信号的实际分布函数,文中给出了这些分布的经验表达式,以及直接从图像上计算这些分布参数的方法。对实验结果的量化评估证明本方法较软、硬阈值法的优越性。 相似文献
4.
相干斑噪声是合成孔径雷达(synthetic aperture radar, SAR)成像系统所固有的缺点,严重影响SAR图像的可用性,给后续的图像分割、特征提取和目标识别等工作带来严峻的挑战。结合非下采样方向滤波器和双树复小波变换各自的特点,提出一种新的基于非下采样方向滤波-双树复小波变换的局部混合滤波SAR图像去噪算法,具有多方向和多尺度性,保持了图像的平移不变性,改善了图像的视觉效果。与其他算法不同,本文算法采用非下采样方向滤波器级联双树复小波的方法,不仅对每次产生的高频分量进行去噪,还对变换所产生的低频分量进行滤波去噪。实验结果表明:与使用同级双树复小波-轮廓波变换加软阈值去噪相比,本文算法的峰值信噪比提高2 dB;与使用轮廓波加循环平移(cycle spinning, CS)软阈值算法去噪相比,本文算法去噪后的图像不仅峰值信噪比有所提高,而且去噪后的图像更为平滑,抑制了人造纹理产生,视觉效果得到了明显改善。 相似文献
5.
SAR图像固有的乘性相干斑噪声降低了图像的相关性,增加了信息熵,影响了图像压缩的性能.多小波能够同时拥有正交性、紧支性和对称性,比单小波具有更多的自由度.因此提出了在多小波域进行去噪和压缩相结合的SAR图像编码算法.首先对图像进行多小波变换,采用改进的软阈值法抑制相干斑噪声同时对图像边缘进行保护,再对多小波系数重排建立空间方向树,然后采用多级树集合划分(SPIHT)算法进行编码.实验结果表明,该算法改进了重建SAR图像的PSNR,同时对相干斑噪声进行了有效的抑制. 相似文献
6.
提出了一种抑制SAR图像斑点噪声的小波域贝叶斯软阈值方法。该算法不同于有偏的去除乘性噪声的同态滤波算法,而是将噪声转化为局部平稳的加性白噪声。在非下采样小波子带上,视数给定时该算法可以简洁有效地估计局部加性噪声方差。在实验中,该算法同Kuan,Lee和Argenti等算法作了比较,结果表明,在常用性能指标上所提算法优于其它算法。 相似文献
7.
基于贝叶斯压缩感知的SAR目标识别 总被引:1,自引:0,他引:1
针对合成孔径雷达(synthetic aperture radar, SAR)目标识别问题,提出一种基于贝叶斯压缩感知(Bayesian compressive sensing, BCS)的图像域SAR目标识别方法。该方法首先对SAR图像进行分割预处理,得到目标区图像数据;然后基于BCS模型,根据训练样本构造传感矩阵;求解测试样本相应的稀疏系数矢量,根据稀疏系数矢量中对应训练样本类别元素的L2范数判定目标类型。采用美国运动和静止目标获取与识别(moving and stationary target acquisition and recognition, MSTAR)计划公开发布的SAR目标数据库进行实验,结果表明该方法具有良好的识别效果。 相似文献
8.
9.
基于自适应窗的小波域图像去噪算法 总被引:2,自引:0,他引:2
提出了一种利用自适应窗的小波域双重局部维纳滤波图像去噪算法。综合考虑小波分解后各个子带中能量分布的方向特性和图像本身的边缘和纹理特性,该算法首先估计每个子带中信号的能量分布进而在每个子带中确定自适应窗,然后利用自适应窗估计出的能量分布对含噪图像进行双重维纳滤波来去除噪声。实验结果表明该算法对含噪图像去噪的效果优于已有的采用二维可分实小波进行图像去噪的算法。 相似文献
10.
提出了一种多尺度贝叶斯网络模型和相应推断算法,并将其应用于合成孔径雷达(synthetic aperture radar, SAR)图像分割。首先根据SAR图像的多尺度序列构建多尺度贝叶斯网络模型;然后设计了模型估计的置信传播(belief propagation, BP)算法,该算法包括同尺度结点之间的信息传播、细尺度到粗尺度的信息传播和粗尺度到细尺度的信息传播;最后计算出细尺度隐含结点的最大后验概率(maximum a posteriori probability, MAP),实现SAR图像的分割。实验结果表明,与单尺度贝叶斯网络模型方法和基于条件迭代模式的Markov随机场模型方法相比,基于多尺度贝叶斯网络的SAR图像分割方法具有较好的分割效果。 相似文献
11.
Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced. 相似文献
12.
复图像域正则化特征增强SAR成像方法 总被引:2,自引:0,他引:2
通过分析合成孔径雷达(SAR)的成像过程和频域上的正则化特征增强方法,提出了一种在复图像域进行正则化特征增强的SAR成像方法,直接从SAR复图像域数据出发,利用先验信息,使用正则化方法重建高分辨率的SAR图像。实验结果表明,该方法能较好地保护目标并增强目标的可分辨性、抑制旁瓣和噪声、提高SAR图像的对比度。通过大量实验,研究了正则化参数的选取规律,总结出一些有用的结论。复图像域上的正则化特征增强方法的计算量比频域上的正则化特征增强方法的计算量大大减小。 相似文献
13.
合成孔径雷达(synthetic aperture radar,SAR)能够通过高分辨图像中的尺寸、姿态、外形轮廓等关键信息对目标进行探测与识别,对关键军事目标造成了严重的威胁.如何有效控制目标的雷达特征,使其不易被SAR发现与分辨,已经成为干扰领域的关键问题.相较于有源干扰,无源干扰具有成本低、响应速度快、操作简单等... 相似文献
14.
提出快速加权核范数最小化(fast weighted nuclear norm minimization,FWNNM)的合成孔径雷达(synthetic aperture radar,SAR)图像去噪算法。首先采用对数变换将SAR图像的乘性噪声变换为加性噪声,然后利用非局部相似性对变换后的图像进行块匹配,随后根据低秩模型框架,用随机奇异值分解替换加权核范数最小化(weighted nuclear norm minimization,WNNM)算法中的奇异值分解进行低秩矩阵逼近,再采用梯度直方图保存的方法对图像进行纹理增强,最终实现了对SAR图像快速去噪。在MSTAR数据库上的实验结果表明,与已有方法相比,所提方法在SAR图像去噪和边缘保持方面是有效的,并且比WNNM去噪速度快3倍。 相似文献
15.
针对高超声速制导炮弹的动力学耦合与非线性控制问题,设计一种基于反馈线性化的终端滑模控制器。首先,兼顾控制系统设计的简便性要求与高超声速制导炮弹的强非线性特点,建立非线性控制模型。然后,对模型中动力学耦合问题,根据微分几何理论对其进行反馈线性化,实现俯仰通道与偏航通道的解耦。最后,对两通道分别设计终端滑模控制器,且控制器有限时间收敛。仿真结果表明,所设计的控制器能够快速稳定的追踪指令信号,且在外界干扰与参数摄动的情况下依然具有良好的鲁棒性。 相似文献
16.
全仿射形变条件下,待配准合成孔径雷达(synthetic aperture radar, SAR)图像与参考SAR图像之间存在各向异性尺度变化,导致传统的点特征图像配准算法难以提取到足够多的匹配特征点进行图像配准。为此,提出了一种基于仿射形变矩阵分解与尺度变化矩阵估计的点特征图像配准算法。该方法首先将仿射形变矩阵分解为图像旋转矩阵、尺度变化矩阵以及常数矩阵的乘积,而后利用粒子群优化(particle swarm optimization, PSO)算法对尺度变化矩阵中的未知参数进行搜索估计,并根据估计结果对图像进行尺度规范处理,以抑制图像间的各向异性尺度变化,在此基础上再利用尺度不变特征转换(scale invariant feature transform, SIFT)算子提取匹配特征点进行配准处理。实验结果表明,与现有方法相比,对于全仿射形变条件下的SAR图像配准,本文所述算法可以提取到更多的匹配特征点,因而具有更好的配准性能。 相似文献
17.
针对合成孔径雷达(synthetic aperture radar, SAR)图像分割这一研究热点,综合论述了基于主动轮廓模型(active contour model, ACM)的SAR图像分割方法。首先,介绍了经典的ACM及其数学原理,并通过理论和实验分析了这些模型应用于SAR图像分割时存在的问题;然后,对目前基于ACM的SAR图像分割方法进行了系统的梳理和分类讨论;最后,对基于ACM的SAR图像分割方法作了总结,并对将来的研究方向进行了展望。 相似文献
18.
结合图像在Shearlet域中系数的特点,提出了一种基于Shearlet系数稀疏表示与投影总变分(total variation, TV)相结合的合成孔径雷达(synthetic aperture radar, SAR)图像去噪算法。有效解决了稀疏表示在图像去噪时存在的边缘细节损失与TV去噪时存在的光滑区域阶梯效应。首先,利用SAR图像Shearlet系数的稀疏性,结合系数稀疏表示模型,采用分段正交匹配追踪方法求解优化解,从统计意义上实现稀疏表示后的系数均值为真实图像系数均值的无偏估计;其次,为弥补稀疏表示中丢失部分系数在图像细节上的损失,同时结合这部分系数对应的Shearlet函数有利于表征图像边缘细节的特性,针对图像在丢失系数对应的Shearlet函数空间中投影重构的结果,结合TV方法迭代去噪。实验结果表明,该方法充分利用Shearlet域系数的特性,采用稀疏去噪与投影TV相结合的方法以弥补各自缺陷,在去噪的同时能有效保持图像纹理细节,并具有更优的图像视觉效果。 相似文献