首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al_2O_3-based inclusions during secondary refining. The results showed that Al_2O_3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition, [Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO–MgO–Al_2O_3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between [Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3 wt% and the temperature is higher than 1843 K.  相似文献   

2.
The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dynamic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process,Al_2 O_3 inclusions transformed into Mg O inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and(Mg O) at the slag/refractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining refractory, forming the Al_2 O_3 or Mg O·Al_2 O_3. The slag had a significant acceleration effect on the mass transfer. The mass transfer rate(or the reaction rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the refining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1 x, and 2.2 x,respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.  相似文献   

3.
Investigating the reaction mechanism between slag and 9CrMoCoB steel is important to develop the proper slag and produce qualified ingots in the electroslag remelting(ESR) process. Equilibrium reaction experiments between molten 9CrMoCoB steel and the slags of 55 wt%CaF_2–20 wt%CaO–3 wt%MgO–22 wt%Al_2O_3–xwt%B_2O_3(x = 0.0, 0.5, 1.0, 1.5, 2.0, 3.0) were conducted. The reaction mechanisms between molten 9 CrMoCoB steel and the slags with different B_2O_3 contents were deduced based on the composition of the steel and slag samples at different reaction times. Results show that B content in the steel can be controlled within the target range when the B_2O_3 content is 0.5 wt% and the FeO content ranges from 0.18 wt% to 0.22 wt% in the slag. When the B_2O_3 content is ≥1 wt%, the reaction between Si and B_2O_3 leads to the increase of the B content of steel. The additions of SiO_2 and B_2O_3 to the slag should accord to the mass ratio of [B]/[Si] in the electrode, and SiO_2 addition inhibits the reaction between Si and Al_2O_3.  相似文献   

4.
MgO·Al2O3 spinel type inclusions in casing steel were analyzed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).The results show that there are three forms.One is pure MgO·Al2O3 spinel,another is the composite oxide of the Mg-Al-Ca-Si-O system,and the third is the complex with oxide as a core covered by sulfide.The formation mechanisms were studied.The influences of slag basicity and vacuum degree on the magnesium content during the vacuum treatment of molten steel and furnace lining in molten steel were calculated with the coexistence theory of slag structure.The results show that the magnesium content increases with the increase in slag basicity and aluminum content in molten steel,and decreases with the increase in CO partial pressure.  相似文献   

5.
In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The largest size of inclusions in the casting and the thermodynamic possibility of TiN precipitation in steel were also calculated. The results show that sulfide inclusions are evenly distributed and the content is low. The amount of oxide inclusions in CIESC: 4Cr5MoSiV1 steel is close to the ESR steel and lower than that in the EAF steel, and there are some differences along radial direction. Nitride inclusions are fine and the diameter of the largest one is 3-4 μm. With the increase of the centrifugal machine's rotational speed, the ratio of round inclusions increases and the ratio of sharp inclusions decreases. According to the experiment and the calculation results, it is pointed out that the largest diameter of non-metallic inclusions in the CIESC 4Cr5MoSiV1 casting is only 6.6 mum, and [N%][Ti%] in 4Cr5MoSiV1 steel should be controlled less than 4.4×10-5 in order to further reduce the amount and size of TiN inclusions.  相似文献   

6.
《矿物冶金与材料学报》2020,27(11):1551-1559
This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories. Three different crucibles were tested—MgO, Al2O3, and MgO–spinel. We studied the variations in the compositions of the inclusions and the alloy–crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and X-ray diffraction. The results showed that the MgO and MgO–spinel crucibles form MgO-containing inclusions (Al–Mg oxides and Al–Mg–Ti oxides), whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al–Ti oxides. We observed a new MgAl2O4 phase at the inner wall of the MgO crucible, with the alloy melted in the MgO crucible exhibiting fewer inclusions. No new phase occurred at the inner wall of the Al2O3 crucible. We discuss the mechanism of interaction between the refractories and the Ni-based superalloy. Physical erosion was found to predominate in the Al2O3 crucible, whereas dissolution and chemical reactions dominated in the MgO crucible. No reaction was observed between three crucibles and the Ti of the melt although the Ti content (3.8wt%) was higher than that of Al (2.1wt%).  相似文献   

7.
Automobile crankshaft steel 42CrMo, which requires excellent machinability and mechanical properties, cannot be manufactured by traditional methods. To achieve these qualities, the formation behavior of boron nitride (BN) inclusions in 42CrMo steel was studied in this article. First, the precipitation temperature and the amount of BN type inclusions with different contents of boron and nitrogen in molten steel were calculated thermodynamically by FactSage software. Then the morphology and the size of BN type inclusions as well as the influence of cooling methods on them were investigated by scanning electron microscopy. Furthermore, the effects of cooling rate and the contents of B and N in molten steel on the morphology, size, and distribution of BN type inclusions were studied quantitatively and detailedly by directional solidification experiments. It is found that different BN inclusions in molten steel can form by controlling the cooling rate and the contents of B and N, which is important for obtaining the excellent machinability of 42CrMo steel.  相似文献   

8.
The equilibrium reaction between CaO—Al2O3—SiO2—MgO slag and 28MnCr5 molten steel was calculated to obtain the suitable slag composition which is effective for decreasing the oxygen content in molten steel. The dissolved oxygen content [O] in molten steel under different top slag conditions was calculated using a thermodynamic model and was measured using an electromotive force method in slag–steel equilibrium experiments at 1873 K. The relations among [O], the total oxygen content (T.O), and the composition of the slag were investigated. The experimental results show that both [O] and T.O decrease with decreasing SiO2 content of the slag and exhibit different trends with the changes in the CaO/Al2O3 mass ratio of the slag. Increasing the CaO/Al2O3 mass ratio results in a decrease in [O] and an increase in T.O. To ensure that T.O ≤ 20 ppm and [O] ≤ 10 ppm, the SiO2 content should be controlled to <5wt%, and the CaO/Al2O3 mass ratio should be in the range from 1.2 to 1.6.  相似文献   

9.
《矿物冶金与材料学报》2020,27(11):1499-1507
The effect of three heat processes with different calcium contents on the evolution of inclusions during the ladle furnace refining process of AISI 321 stainless steel was investigated. The size, morphology, and composition of the inclusions were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. After the addition of aluminum and titanium, the primary oxide in the AISI 321 stainless steel was an Al2O3–MgO–TiOx complex oxide, in which the mass ratio of Al2O3/MgO was highly consistent with spinel (MgO·Al2O3). After calcium treatment, the calcium content in the oxide increased significantly. Thermodynamic calculations show that when the Ti content was 0.2wt%, the Al and Ca contents were less than 0.10wt% and 0.0005wt%, respectively, which was beneficial for the formation of liquid inclusions in molten steel. Moreover, the modification mechanism of calcium on TiN-wrapped oxides in combination with temperature changes was discussed.  相似文献   

10.
The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O2-Al2O3-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O2in slag to avoid the loss of Mn due to the reaction;this process caused both Al2O3in slag and Si in steel to increase while Si O2and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al2O3-Mg O→Mg O→Mn O-Ca O-Al2O3-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions.  相似文献   

11.
The effect of magnesium addition on the number, morphology, composition, size, and density of inclusions in H13 die steel was studied. The results show that the total oxygen content in the steel can be significantly decreased to 0.0008wt%. Al2O3 and MnS inclusions are changed into nearly spherical MgO·Al2O3 spinel and spherical MgO·MgS inclusions, respectively. The number of inclusions larger than 1 μm decreases and the number of inclusions smaller than 1 μm increases with increasing magnesium content. V(N,C) precipitates around MgO·Al2O3 and MgO·MgS inclusions during solidification of liquid steel. The densities of MgO·Al2O3 spinel inclusions are lower than that of alumina inclusions. With increasing magnesium content in the Mg-containing inclusions, the density of inclusions decreases, leading to the improvement of inclusion removal efficiency.  相似文献   

12.
Industrial experiments with three types of slags were performed to investigate the effect of slag on oxide inclusions during electroslag remelting(ESR) process. G20CrNi2Mo bearing steel was used as the consumable electrode and remelted using a 2400-kg industrial furnace. The results showed that most inclusions in the electrode were low-melting-point CaO-MgO-Al_2O_3. After ESR, all the inclusions in ingots were located outside the liquid region. When the slag consisted of 65.70 wt% CaF_2, 28.58 wt% Al_2O_3, and 4.42 wt% CaO was used, pure Al_2O_3 were the dominant inclusions in ingot, some of which presented a clear trend of agglomeration. When the ingot was remelted by a multi-component slag with 16.83 wt% CaO, a certain amount of sphere CaAl_4O_7 inclusions larger than 5 μm were generated in ingot. The slag with 8.18 wt% CaO exhibited greater capacity to control the inclusion characteristics. Thermodynamic calculations indicated that the total Ca and Mg in ingots were attributed from the relics in electrode and strongly influenced by the slag composition. The formation of ingot inclusions was calculated by FactSage~(TM) 7.0, and the results were basically in accordance with the observed inclusions, indicating that a quasi-thermodynamic equilibrium could be obtained in the metal pool.  相似文献   

13.
《矿物冶金与材料学报》2021,28(12):1940-1948
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca–Al–Ti–O + MnS, Ca–Mg–Al–Ti–O + MnS, and La–Ca–Mg–Al–Ti–O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 μm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.  相似文献   

14.
Many researchers have explored the inclusion modification mechanism to improve non-metallic inclusion modifications in steelmaking. In this study, two types of industrial trials on inclusion modifications in liquid steel were conducted using ultra-low-carbon Al-killed steel with different Mg and Ca contents to verify the effects of Ca and Mg contents on the modification mechanism of Al2O3-based inclusions during secondary refining. The results showed that Al2O3-based inclusions can be modified into liquid calcium aluminate or a multi-component inclusion with the addition of a suitable amount of Ca. In addition,[Mg] in liquid steel can further reduce CaO in liquid calcium aluminate to drive its evolution into CaO-MgO-Al2O3 multi-component inclusions. Thermodynamic analysis confirmed that the reaction between[Mg] and CaO in liquid calcium aluminate occurs when the MgO content of liquid calcium aluminate is less than 3wt% and the temperature is higher than 1843 K.  相似文献   

15.
Tundish is an important metallurgical reactor in the continuous casting process. In order to control the fluid flow in tundish and thus take full advantage of the residencetime available for the removal of inclusions from molten steel, the effect of weir and dam on the fluid flow has been studied in a water model based on the characteristic number Froude and Reynold number similarity criteria. The residence time distribution curves of the flow were measured by SG800. The optimum arrangement of darn and weir and the nonstationary flow in tundish were discussed. The results show that the combination of weir and dam is benefit for the flow pattern in tundish, weir can prevent the upper recirculating flow, dam can cut off the bottom flow and turn to upwards, it is advantageous to separate the nonmetallic inclusions. Furthermore, it is important to exceed the critical depth of bath during exchange ladles, not only for the inclusion floatation but also for avoiding tundish slag drainage earlier.  相似文献   

16.
The properties of MnO–Al_2O_3–SiO_2-based plasticized inclusion are likely to change during soaking process due to its low melting point. In this study, the evolution of the MnO–Al_2O_3–SiO_2-based inclusion of 18 wt%Cr-8 wt%Ni stainless steel under isothermal soaking process at 1250°C for different times was investigated by laboratory-scale experiments and thermodynamic analysis. The results showed that the inclusion population density increased at the first stage and then decreased while their average size first decreased and then increased. In addition, almost no Cr_2O_3-concentrated regions existed within the inclusion before soaking, but more and more Cr_2O_3 precipitates were formed during soaking. Furthermore, the plasticity of the inclusion deteriorated due to a decrease in the amount of liquid phase and an increase in the high-melting-pointphase MnO–Cr_2O_3 spinel after the soaking process. In-situ observations by high-temperature confocal laser scanning microscopy(CLSM) confirmed that liquid phases were produced in the inclusions and the inclusions grew rather quickly during the soaking process. Both the experimental results and thermodynamic analysis conclude that there are three routes for inclusion evolution during the soaking process. In particular, Ostwald ripening plays an important role in the inclusion evolution, i.e., MnO–Al_2O_3–SiO_2-based inclusions grow by absorbing the newly precipitated smaller-size MnO–Cr_2O_3 inclusions.  相似文献   

17.
During the production of Ti-bearing Al-killed ultra-low-carbon (ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl-Heraeus (RH) process was low:heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process (process-I), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition (process-Ⅱ). Temperature increases of 10℃ by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-I than by process-Ⅱ. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-I were substantially less than those in the slab obtained by process-Ⅱ. For process-I, the Al2O3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-Ⅱ than for process-I at different refining stages because of the higher dissolved oxygen concentration in process-Ⅱ. Industrial test results showed that process-I was more beneficial for improving the cleanliness of molten steel.  相似文献   

18.
The dephosphorization experiments of low phosphorus containing steel by CaO-based and BaO-based fluxes were carried out. The effects of the oxygen potential in molten steel and the BaO content in the slag on dephosphorization and rephosphorization of molten steel were analyzed. The results showed that the dephosphorization ratio of more than 50% and the ultra-low phosphorus content of less than 0.005% in steel were obtained by the three kinds of dephosphorization fluxes as the oxygen potential of molten steel higher than 400×10-6. Rephosphorization of molten steel was serious as the oxygen content of molten steel lower than 10×10-6. BaO-based fluxes can improve the dephosphorization effect and reduce the phosphorus pick-up effectively under the condition of weak deoxidization of molten steel (the oxygen potential is about 100×10-6), but can not prevent rephosphorization under the condition of deep deoxidization of molten steel (the oxygen potential less than 10×10-6).  相似文献   

19.
Fine bubbles will create when the inert gas is introduced to the high rapid steel stream within the shroud nozzle between ladle and tundish. The collision and attachment among the bubbles and fine inclusions will promote the floatation efficiency of inclusions in the tundish. The behaviors of the bubbles, such as the dispersion in shroud, coalescence and floatation in tundish, are studied.The results show that the maximum sizes of the bubbles in the water and steel flow within the shroud in the length of 1.2 m are 0.70-1.44mm and 1.53-3.16mm respectively when the flow rates are 0.006-0.016 m3/s; the terminal velocities of fine bubbles in the water and molten steel within the tundish are 0.02-0.2 and 0.05-0.6 m/s.  相似文献   

20.
Tramp elements such as tin are considered harmful to steel because of hot brittleness they induce at high temperatures. Because tramp elements retained in steel scrap will be enriched in new steel due to the difficultly of their removal, studies on the precipitation behavior of tin are essential. In this study, the effects of different inclusions on the precipitation behavior of tin in steel were studied. The results show that the tin-rich phase precipitates at austenite grain boundaries in an Fe-5%Sn alloy without MnS precipitates, whereas Sn precipitates at the boundaries of MnS inclusions in steel that contains MnS precipitates. MnS is more effective than silicon dioxide or aluminum oxide as a nucleation site for the precipitation of the tin phase, which is consistent with the disregistry between the lattice parameters of the tin phase and those of the inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号