首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured ZnFe2O4 was synthesized by the heat treatment of a mechanically activated mixture of ZnO/α-Fe2O3. X-ray diffraction (XRD) and differential thermal analysis (DTA) results demonstrated that, after 5 h of the mechanical activation of the mixture, ZnFe2O4 was formed by heat treatment at 750°C for 2 h. To improve the characteristics of ZnFe2O4 for adsorption applications, the chemical activation process was performed. The 2 h chemical activation with 1 mol·L?1 HNO3 and co-precipitation of 52%?57% dissolved ZnFe2O4 led to an increase in the saturated magnetization from 2.0 to 7.5 emu·g?1 and in the specific surface area from 5 to 198 m2·g?1. In addition, the observed particle size reduction of chemically activated ZnFe2O4 in field emission scanning electron microscopy (FESEM) micrographs was in agreement with the specific surface area increase. These improvements in ZnFe2O4 characteristics considerably affected the adsorption performance of this adsorbent. Adsorption results revealed that mechano-thermally synthesized ZnFe2O4 had the maximum arsenic adsorption of 38% with the adsorption capacity of 0.995 mg·g?1 in a 130 mg·L?1 solution of As(V) after 30 min of agitation. However, chemically activated ZnFe2O4 showed the maximum arsenic adsorption of approximately 99% with the adsorption capacity of 21.460 mg·g?1 under the same conditions. These results showed that the weak adsorption performance of mechano-thermally synthesized ZnFe2O4 was improved by the chemical activation process.  相似文献   

2.
Granular activated carbons were produced from palm nut shells by physical activation with steam. The proximate analysis of palm nut shells was investigated by thermogravimetric analysis, and the adsorption capacity of the activated carbons, produced as a result of shell pyrolysis at 600℃ followed by steam activation at 900℃ in varying activation times, was evaluated using nitrogen adsorption at 77 K. Applicability of the activated carbons for gold dicyanide adsorption was also investigated. Increasing the activation hold time with the attendant increase in the degree of carbon burn-off results in a progressive increase in the surface area of the activated carbons, reaching a value of 903.1 m2/g after activation for 6 h. The volumes of total pores, micropores, and mesopores in the activated carbons also increase progressively with the increasing degree of carbon burn-off, resulting from increasing the activation hold time. The gold di-cyanide adsorption of the activated carbons increases with the rise of pore volume of the activated carbons. The gold di-cyanide adsorption of palm nut shell activated carbon obtained after 6-h activation at 900℃ is superior to that of a commercial activated carbon used for gold di-cyanide adsorption.  相似文献   

3.
Pure metal-doped(Cu,Zn)Fe_2O_4 was synthesized from Zn-containing electric arc furnace dust(EAFD) by solid-state reaction using copper salt as additive. The effects of pretreated EAFD-to-Cu_2(OH)_2CO_3·6H_2O mass ratio, calcination time, and calcination temperature on the structure and catalytic ability were systematically studied. Under the optimum conditions, the decolorization efficiency and total organic carbon(TOC) removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0% and 45.0%, respectively, and the decolorization efficiency remained 83.0% after five recycles, suggesting that the as-prepared(Cu,Zn)Fe_2O_4 was an efficient heterogeneous Fenton-like catalyst with high stability. The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions. More importantly, the toxicity characteristic leaching procedure(TCLP) analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe_2O_4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574—2015), further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.  相似文献   

4.
CaO–Al_2O_3–SiO_2(CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material.The effects of the addition of Fe_2O_3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis,X-ray diffraction,and scanning electron microscopy.The crystallization activation energy was calculated using the modified Johnson–Mehl–Avrami equation.The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS.The crystallization activation energy first increased and then decreased with increasing amount of added Fe_2O_3.At 4wt% of added Fe_2O_3,the crystallization activation energy reached a maximum of 676.374 k J×mol-1.The type of the main crystalline phase did not change with the amount of added Fe_2O_3.The primary and secondary crystalline phases were identified as wollastonite(CaSiO_3) and hedenbergite(Ca Fe(Si_2O_6)),respectively.  相似文献   

5.
Nowadays,the novel oil water interface method has attracted a considerable attention owing to the advantages of mild reaction conditions,simple operation,low cost,and high efficiency.In this paper,uniform oil-soluble Fe_3O_4 nanoparticles(NPs) were synthesized by oil-water interface method from mixing iron tristearate of 0.067mol/L in cyclohexane with ferrous sulfate in water.The as-prepared products were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),vibrating sample magnetometer(VSM),Fourier transform infrared spectroscopy(FT-IR) and thermogravimetric analyzer(TGA).TEM images and XRD profiles showed that the size of the oil-soluble products ranged in 1.7-6.9 nm.VSM indicated that the Fe_3O_4 NPs were superparamagetic.FT-IR and TGA proved that oleic acid was combined to the surface of Fe_3O_4 NPs closely.TEM images and XRD profiles revealed that the most suitable reaction concentration of NH_3·H_2O,oleic acid/water in volume,reaction temperature and reaction time were 4.5 mol/L,50:1 000,80℃ and 6 h,respectively.The formation mechanism of the nearly monodispersed Fe_3O_4 NPs was that the preformed Fe_3O_4 nuclei were capped by oleic acid as early as the nucleation occurred in oil-water interface and subsequently entered into oil phase to stop growing.  相似文献   

6.
The feasibility of aluminum recovery from secondary aluminum dross by extraction with NaOH solution and the subsequent synthesis of MgAl_2O_4 spinel by sintering the extracted slag were studied. The extraction percentage of soluble aluminum from the dross reached 80% at a temperature of 353 K, liquid-to-solid ratio of 12 mL·g~(-1), stirring speed of 300 r·min~(-1), and an extraction time of 15 min; the hydrolysis percentage of AlN reached 40% with an extraction time of 30 min. The activation energies of the soluble aluminum and AlN extracted from the dross were 7.15 and 8.98 kJ·mol~(-1), respectively, indicating that their kinetics were controlled by outer diffusion without a product layer. The extracted slag was sintered in the temperature range 1373–1773 K; MgAl_2O_4 spinel with a compressive strength as high as 69.4 MPa was produced in the sample sintered at 1673 K for 3 h. This value exceeds the threshold(40 MPa) prescribed by the National Standard for the Magnesia and Magnesia-alumina Refractory Bricks of China(GB/T 2275-2007). These results establish the effectiveness of aluminum recovery from secondary aluminum dross and subsequent MgAl_2O_4 spinel synthesis.  相似文献   

7.
A series of 1,8,15,22-tetra(2,4-ditertbutylphen-oxy) phthalocyanines [α-(oAr)4PcM,M1=(H)2,M2=Pd,M3=Cu,M4=Zn,M5=Pb] were synthesized in this study.Each compound was bromized in two kinds of solvent.One is the solvent mixture of 1,1,2-trichloroethane and water,the other is 1,1,2-trichloroethane alone.The effects of solvent,bromine excess added and reaction duration on the bromization reaction were studied.The shift of maximum absorbance wave-length both is solution and in solid thin film was investigated comparatively,discovering that both were bathochromism but the former was more.TG data showed that the temperature of thermal decomposition decreased continuously with the increase of numbers of bromine.Finally,the fragments produced during the bromization of (OAr)4PcPb in 1,1,2-trichloroethane were characterized by GC/MS.Based on the electronic structure,the possible mechanism of decomposition of these compounds was presented and discussed.  相似文献   

8.
The single phaseα-Mn O_2and in-situ supportedα-Mn O_2/Zr O_2with different ratios of Mn/Zr were synthesized by one-pot hydrothermal method.They showed superior activity for catalytic oxidation of methane and even better than that of 1%Pt/Al_2O_3.The T_(50)of Mn O_2/Zr O_2catalysts with different ratios of Mn/Zr were located in the range of 315–335°C at a WHSV of 90 L g~(-1)h~(-1),whereas that of Pt/Al_2O_3was 380°C.After sulfur ageing,the Mn O_2/Zr O_2catalysts with Mn/Zr ratio of 2:1(2Mn O_2/1Zr O_2)and 1:1(1Mn O_2/1Zr O_2)exhibited satisfying sulfur resistance in comparison to the pure Mn O_2.The 2Mn O_2/1Zr O_2catalyst also showed acceptable catalytic stability,and the addition of 10 vol%CO_2had no obvious negative effect on its stability,whereas the addition of2.6 vol%H_2O caused slight but reversible decreasing methane oxidative activity.  相似文献   

9.
In this work,we synthesized LaFeO_3–xwt%Ni(x=0,5,10,15)composites via a solid-state reaction method by adding Ni to the reactants,La_2O_3 and Fe_2O_3.Field-emission scanning electron microscopy(FE-SEM)and energy-dispersive X-ray spectroscopy(EDS)results revealed that Ni powders evenly dispersed among the LaFeO_3 particles and apparently reduced their aggregation,which imparted the composites with a loose structure.Moreover,the Ni formed a conductive network,thus improving the conductivity of the composites.The maximum discharge capacity of the LaFeO_3 electrodes remarkably increased from 266.8 mAh·g~(–1)(x=0)to 339.7 mAh·g~(–1)(x=10).In particular,the high-rate dischargeability of the LaFeO_3–10wt%Ni electrode at a discharge current density of 1500 mA·g~(-1) reached 54.6%,which was approximately 1.5 times higher than that of the pure LaFeO_3.Such a Ni-modified loose structure not only increased the charge transfer rate on the surface of the LaFeO_3 particles but also enhanced the hydrogen diffusion rate in the bulk LaFeO_3.  相似文献   

10.
Highly uniform and tight adhering of Fe_3O_4 particles on carbon fiber film(Fe_3O_4/CFF) is achieved through a simple in-situ thermal oxidation method. Particularly, 3D CFF with interconnected structure can shorten transfer path and buffer the volume expansion during charge-discharge cycling. Herein, the obtained Fe_3O_4/CFF anode exhibits a stable cycling performance and excellent high rate capability. The cell delivers a reversible capacity of 1 711 m A·g~(–1) at a current density of 100 m A·g~(–1) after 100 cycles. Even at a high rate density of 2 A·g~(–1), the specific capacity also can maintain 1034 m A·g~(–1) after 100 cycles. The simplified fabrication is featured with low-cost and this binder-free perspective holds great potential in mass-production of high-performance metal oxide electrochemical devices.  相似文献   

11.
The synthesis of a copper(Ⅱ) oxide-montmorillonite composite and its application in the removal of lead(Ⅱ) ions in solution were investigated. The Acros Organics (ACOR) montmorillonite was activated using potassium hydroxide solution. The activated ACOR montmorillonite was titrated with copper(Ⅱ) nitrate solution to produce the copper(Ⅱ) oxide-montmorillonite composite. Adsorption experiments were conducted using batch-mode techniques under reducing conditions at ambient temperature. The reaction mechanism indicated a higher proton coefficient, greater intraparticle diffusion, and higher mass transfer rates compared with those achieved with bare montmorillonite. The intraparticle diffusion constant derived from the slope was 2.93-3 (mg·g-1·min-0.5), and the intercept C was 9.86, ≠ 0. In the presence of a CuO coating, the adsorption efficiency was 85.55% at pH 4 and 89.62% at pH 7. Therefore, the copper(Ⅱ) oxide-montmorillonite composite, as a novel adsorbent with a very high adsorption capacity, exhibited substantially enhanced adsorption of Pb2+ ions compared with bare montmorillonite.  相似文献   

12.
In this paper, Li_2FeSi_(0.98)M_(0.02)O_4/C(M = Mg, Zn, Co, Mn, Ni) was synthesized as cathode material for lithium ion battery by solid-state method. The results show that the materials doped with Mg and Zn at the Si-sites have good initial discharge capacity. Then Li_2FeSi_(1-x)M_xO_4/C(M = Mg, Zn; x = 0.01, 0.02, 0.03, 0.05) were also synthesized via solid-state method. It is concluded that Li_2FeSi_(0.99)Mg_(0.01)O_4/C and Li_2FeSi_(0.98)Zn_(0.02)O_4/C have better initial discharge capacity which is 125 mAh/g and 166.2 mAh/g, respectively. The capacity of Li_2Fe_(0.98)Zn_(0.02)SiO_4/C is 157.3 m Ah/g after 10 cycles at 0.1 C, and the capacity retention rate is 94.6%. The Li~+ diffusion coefficient of Li_2FeSi_(0.98)Zn_(0.02)O_4/C is higher than that of pure phase materials by one order of magnitude. The Li_2FeSi_(0.99)Mg_(0.01)O_4/C and Li_2FeSi_(0.98)Zn_(0.02)O_4/C were tested by XRD and SEM. XRD patterns indicate that the crystal structure of Li_2FeSiO_4 is not changed after being doped with metal ion at the Si-site. The SEM image indicates that no obvious agglomeration is detected in these materials. Li_2FeSi_(0.98)Zn_(0.02)O_4/C processes better electrochemical performance analyzed by EDS、XPS and FT-IR spectra. The data prove that Si~(4+) is successfully replaced by Zn~(2+) in the crystal structure of Li_2FeSiO_4.  相似文献   

13.
Iron sulfides are promising anode materials for lithium ion batteries(LIBs) owe to their high theoretical capacity and low cost. However, unsatisfactory electronic conductivity, dissolution of polysulfides, and severe agglomeration during the cycling process limit their applications. To solve these issues, a ternary FeS_2/Fe_7S_8@nitrogensulfur co-doping reduced graphene oxide hybrid(FeS_2/Fe_7S_8@NSG) was designed and synthesized through a facile hydrolysis-sulfurization strategy, in which the FeS_2/Fe_7S_8 could be well distributed upon the NSG. The NSG was believed to buffer the volume change and augment the electronic conductivity of the electrode, and the nanodimensional FeS_2/Fe_7S_8 particles with a diameter of 50–100 nm could shorten the ion-diffusion paths during the lithiation/delithiation process. Benefiting from synergistic contributions from nano-dimensional FeS_2/Fe_7S_8 and flexible NSG, the FeS_2/Fe_7S_8@NSG hybrid displayed a high initial capacity of ~1068 m Ah g~(-1) at 200 mA g~(-1),good cycling stability(~898 mAh g~(-1) at 500 mA g~(-1) after 200 cycles) and high-rate performance. Further kinetic analysis corroborated that the introduction of NSG boosted the capacitive behavior. Above results indicate the potential applications of FeS_2/Fe_7S_8@NSG hybrid in LIBs with low-cost and high energy density.  相似文献   

14.
Monodispersed dihydrated zinc oxalate(ZnC_2O_4·2H_2O) particles with characteristic morphology were synthesized by aging a mixed solution of zinc nitrate(Zn(NO_3)_2) and sodium oxalate(Na_2C_2O_4) in the presence of a citrate ligand, with an average flat size of approximately 10–15 μm. The important parameters, including the solution pH values and the concentration of the zinc ions and citrate ligand, were investigated using a series of experiments. It is verified that the citrate ligand significantly affects the morphology of zinc oxalate particles, probably via its multiple roles of chelating, dispersing, and selective absorption. Thermodynamic equilibrium of the distribution of zinc species in an aqueous solution of Zn(Ⅱ)-citrate-oxalate-H_2O was estimated to explain the experimental results and to clarify the size and morphological evolution mechanism of the precipitated particles.  相似文献   

15.
In this paper, the absorbable organic halogen (AOX) amounts in the effluents from Lanasol reactive wool dyeing were determined using DIN 38409 H14 methods and compared with the remaining chromophore concentratlons which were determined spectrophotometrically. It was found that the dyes remaining in the dyeing effluents did result in AOX concentratiom. By measuring the adsorption rates of Lanasol dyes on activated charcoal at different temperatures and pH values, the maximum adsorption on activated charcoal and optimum adsorption conditions of the Lanasol reactive dyes were determined. The experiments showed that the AOX values of the dyes measured by these two methods were not in agreement.he reasons for this observation are discussed.  相似文献   

16.
The flotation of hemimorphite using the S(Ⅱ)–Pb(Ⅱ)–xanthate process,which includes sulfidization with sodium sulfide,activation by lead cations,and subsequent flotation with xanthate,was investigated.The flotation results indicated that hemimorphite floats when the S(Ⅱ)–Pb(Ⅱ)–xanthate process is used; a maximum recovery of approximately 90% was obtained.Zeta-potential,contact-angle,scanning electron microscopy–energy-dispersive spectrometry(SEM–EDS),and diffuse-reflectance infrared Fourier transform spectroscopy(DRIFTS) measurements were used to characterize the activation products on the hemimorphite surface and their subsequent interaction with sodium butyl xanthate(SBX).The results showed that a Zn S coating formed on the hemimorphite surface after the sample was conditioned in an Na2 S solution.However,the formation of a Zn S coating on the hemimorphite surface did not improve hemimorphite flotation.With the subsequent addition of lead cations,Pb S species formed on the mineral surface.The formation of the Pb S species on the surface of hemimorphite significantly increased the adsorption capacity of SBX,forming lead xanthate(referred to as chemical adsorption) and leading to a substantial improvement in hemimorphite flotation.Our results indicate that the addition of lead cations is a critical step in the successful flotation of hemimorphite using the sulfidization–lead ion activation–xanthate process.  相似文献   

17.
The microstructure evolution and electrolysis behavior of(Cu_(52)Ni_(30)Fe_(18))–x Ni Fe_2O_4(x=40wt%,50wt%,60wt%,and 70wt%)composite inert anodes for aluminum electrowinning were studied.Ni Fe_2O_4 was synthesized by solid-state reaction at 950°C.The dense anode blocks were prepared by ball-milling followed by sintering under a N_2 atmosphere.The phase evolution of the anodes after sintering was determined by scanning electron microscopy and energy-dispersive X-ray spectroscopy.The results indicate that a substitution reaction between Fe in the alloy phase and Ni in the oxide phase occurs during the sintering process.The samples were also examined as inert anodes for aluminum electrowinning in the low-temperature KF–NaF–AlF_3 molten electrolyte for 24 h.The cell voltage during electrolysis and the corrosion scale on the anodes were analyzed.The results confirm that the scale has a self-repairing function because of the synergistic reaction between the alloy phase with Fe added and the oxide phase.The estimated wear rate of the(Cu_(52)Ni_(30)Fe_(18))–50Ni Fe_2O_4 composite anode is 2.02 cm·a~(-1).  相似文献   

18.
A novel triolein-embedded activated carbon composite adsorbent was developed. Experiments were carried out in areas such as the preparation method, the characterization of physicochemicai properties, and the adsorption behavior of the composite adsorbent in removing dieldrin from aqueous solution. Results suggested that the novel composite adsorbent was composed of the supporting activated carbon and the surrounding triolein-embedded cellulose acetate membrane. The adsorbent was stable in water, for no triolein leakage was detected after soaking the adsorbent for five weeks. The adsorbent had good adsorption capability to dieldrin, which was indicated by a residual dieldrin concentration of 0.204μg·L^-1. The removal efficiency of the composite adsorbent was higher than the traditional activated carbon adsorbent.  相似文献   

19.
Magnetically recyclable photocatalysts with efficient performances under visible light were synthesized by combining Fe_3O_4/ZnO with BiOI and polyaniline(PANI). The FT-IR, XRD, HRTEM, SEM, EDX, XPS, UV–vis DRS,VSM, BET, and PL instruments were utilized for characterization of the as-prepared products. The activity tests exhibited that the superior rate constant in photocatalytic performance was achieved over the Fe_3O_4/ZnO/BiOI/PANI(20%) nanocomposite, which enhanced for more than 59.9, 10.0, and 6.57 times, as compared to those of the Fe_3O_4/ZnO, Fe_3O_4/ZnO/PANI, and Fe_3O_4/ZnO/BiOI photocatalysts in degradation of RhB, respectively.Successful photocatalytic degradations of MO/MB and photo reduction of Cr(VI) were also investigated to confirm the potential application of the photocatalyst in removal of various pollutants. The considerably enhanced activity pointed to a promoting effect of p-n-p heterojunctions formed between PANI, ZnO, and BiOI, and improved textural characteristics, which are benefit for improvement of the photocatalytic performances.  相似文献   

20.
Fe_(76)Si_9B_(10)P_5/Zn_(0.5)Ni_(0.5)Fe_2O_4 amorphous composite with micro-cellular structure and high electrical resistivity was prepared by spark plasma sintering(SPS) at 487 °C. XRD and SEM results showed that the Fe_(76)Si_9B_(10)P_5 alloy powders remained the amorphous state and the composite was dense. A fusion zone at interface of Fe_(76)Si_9B_(10)P_5 cell body and Zn_(0.5)Ni_(0.5)Fe_2O_4 cell wall was observed by TEM, which also indicates the formation of local high temperature. The interface bonding based on the formation of local high temperature in SPS process was observed. It is believed that the tip effect of Zn_(0.5)Ni_(0.5)Fe_2O_4 nanoparticles promotes the local discharging and plasmas creation in the gaps, and the discharging energy forms an instantaneous local high temperature to complete the local sintering and the densification of Zn_(0.5)Ni_(0.5)Fe_2O_4 particles at a low nominal sinter temperature. Simultaneously, the local high temperature stimulates the adjacent gaps discharging, thus facilitate the continuous formation of new discharging path. Finally, sintering and densification of the amorphous composite is complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号