共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高合成孔径雷达(synthetic aperture radar,SAR)图像中目标变体的识别性能,在鉴别字典学习及联合动态稀疏表示模型的基础上,提出一种基于多信息字典学习及稀疏表示的SAR目标识别方法。在训练阶段,采用鉴别字典学习LC-KSVD方法分别对目标图像域幅度信息及目标频域幅度信息进行字典学习。在测试阶段,结合训练阶段学到的2种信息的字典及测试目标的2种信息,采用联合动态稀疏表示模型求解2种信息下的稀疏表示系数。最后,根据2种信息下的重构误差实现对测试目标的识别。使用MSTAR数据集对算法进行验证,结果表明,新方法相对于现有的方法能够达到更好的识别性能。 相似文献
2.
在基于稀疏表示的幻觉脸重建过程中,由于冗余的过完备字典会降低稀疏编码的效率和精度,提出用紧的聚类子字典来表示人脸图像的不同结构对象。由高分辨率(high resolution, HR)/低分辨率(low resolution, LR)的人脸图像样本集进行K-均值聚类,为使紧的聚类子字典能够表达图像块的整体特征,对各聚类子集采用主成分分析(principal component analysis, PCA)方法构造字典。得到同构的HR/LR的聚类字典后,对于输入的LR人脸图像块,经自适应选择合适的子字典后,对稀疏编码添加正则化项,采用集中式稀疏编码,以使稀疏表示系数更逼近要重建的HR人脸图像块。由此稀疏表示系数与HR字典的线性组合得到HR人脸图像块,将此图像块与近似结果进行合成,从而得到最终的人脸图像。经仿真实验,并与其他的方法进行比较,实验结果验证了所提方法的有效性。 相似文献
3.
为了提高从宽角合成孔径雷达(synthetic aperture radar, SAR)图像中提取目标后向散射各向异性特性的性能,在宽角SAR字典稀疏表示模型的基础上,提出一种基于高斯字典原子的高精度宽角SAR成像方法。在字典构造上,采用不同中心位置、相同方差的高斯函数。在求解稀疏表示系数上,采用广义最小最大凹惩罚稀疏重构算法求解。最后,根据稀疏表示系数的重构结果以及构造的字典得到目标的后向散射各向异性特性。通过仿真实验和Backhoe数据对算法进行验证,结果表明,该方法能够高精度地提取目标的后向散射各向异性特性。 相似文献
4.
基于卷积稀疏编码和K-SVD联合字典的稀疏表示 总被引:1,自引:0,他引:1
针对现有稀疏表示算法存在字典单一、编码冗余的缺点,从人类视觉感知系统层次处理特性出发,依据神经元侧抑制与竞争机理,构建了基于卷积稀疏编码和K 奇异值分解(K-singular value decomposition, K-SVD)的联合字典。在此基础上提出结合卷积匹配追踪和正交匹配追踪算法对图像进行分层稀疏表示。实验结果表明联合字典能够自适应匹配图像中的边缘、斑块、纹理等特征,与单独的卷积字典和K-SVD冗余字典相比,稀疏表示能力更强。 相似文献
5.
针对目前基于稀疏表示模型的图像超分辨率重建方法对于边缘、纹理等细节信息保持能力有限、易产生视觉伪影的问题,提出了基于稀疏表示和多成分字典学习的超分辨率重建算法。在字典训练阶段,所提算法在利用图像形态分量分析方法构造纹理和结构字典的基础上,为了有效地提取低分辨率图像特征细节信息,对图像结构分量采用一阶二阶导数进行特征提取,对纹理分量采用Gabor变换进行特征提取,并使用L1/2范数构造训练字典模型;而在重建阶段,为了消除重建图像块效应及模糊伪影,进一步提高重建图像的质量,采用全局约束和非局部相似性约束相结合的方法对重建高分辨率图像进行优化。实验结果表明,该算法在重建图像主观和客观评价指标方面均有较好的表现。 相似文献
6.
基于主元分析和稀疏表示的SAR图像目标识别 总被引:1,自引:0,他引:1
现有的合成孔径雷达图像目标识别方法通常包括图像预处理、特征提取和识别算法3部分。但是,预处理算法的自适应性很难得到保证。提出了一种基于主元分析和稀疏表示的目标识别算法。首先,阐述了稀疏表示和重构的基本理论;其次,提出了基于主元分析和稀疏表示的合成孔径雷达图像目标识别算法;最后,选取MSTAR数据库中的5类合成孔径雷达目标图像进行仿真。结果表明,在没有预处理的情况下,该算法仍能有效地识别目标,与主元分析和三阶近邻的识别算法相比,具有较高的识别率和鲁棒性。 相似文献
7.
针对多数传统分类算法应用于高光谱分类存在的分类精度较低、光谱信息利用不充分的问题,在基于核函数的联合稀疏表示分类方法的基础上提出了一种基于二级字典的联合稀疏表示的高光谱分类算法。在字典原子前加入待测像元与该原子的引力,以达到更快捷地找到与待测像元相匹配的原子的目的。加入的引力值由万有引力公式改进的适应于高光谱图像的公式计算而来。为了使得稀疏重构后的残差波段中包含的具有一定意义的分类鉴别信息被充分挖掘,本文采用指数平滑公式对残差信息进行再利用。通过在Indian Pine数据集和Salina-A数据集上进行实验,验证了所提算法可以提升分类精度。 相似文献
8.
提出一种基于改进稀疏子空间聚类的图像分割方法。首先将图像进行过分割得到一些均匀区域称为超像素,并提取超像素的颜色直方图作为其特征;然后建立特征数据的改进稀疏子空间表示并由此构造图相似度矩阵,最后利用谱聚类算法得到超像素的聚类结果并作为图像分割结果。实验结果表明,本文提出的改进稀疏子空间聚类方法具有良好的聚类性能,对噪声具有一定的鲁棒性;用于自然图像能够得到更好的分割效果。 相似文献
9.
在稀疏子空间聚类算法的基础上,提出一种基于加权稀疏子空间聚类的图像分割方法。利用加权的稀疏约束使得特征数据能够更好地被同一子空间内相似性高的特征数据线性表示,系数矩阵在类间更为稀疏。实验表明,给出的加权稀疏子空间聚类方法对于干净数据和带噪声的数据都能得到较高的数据聚类准确率,对自然图像能够得到比较符合人眼视觉特性的分割结果。 相似文献
10.
11.
提出一种基于多重稀疏表示的声纳图像超分辨率重建方法。该方法针对声纳图像的光滑、边缘和纹理3种结构形态,分别利用离散平稳小波变换、contourlet小波变换和Gabor小波变换建立过完备字典,并对多重稀疏表示的声纳图像进行超分辨率重建。实验结果表明,该方法得到的超分辨率图像能够有效保持原始高分辨率图像的几何特征和纹理特征,可以得到更高的峰值信噪比,并且对噪声具有鲁棒性。 相似文献
12.
提出一种图像分割的多特征融合加权稀疏子空间聚类方法。采用多种属性的特征能够更可靠地描述图像中不同物体的特性,提高分割的准确性和可靠性。定义了加权稀疏度量,即在1 范数中引入权重,权重与数据的相似度成反比,有利于迫使相似的数据尽可能参与到数据的自表示中,从而改善稀疏表示过稀疏并且不稳定的局限性。实验结果和客观指标表明,所提方法能有效地分割自然图像, 获得的结果更加符合人类视觉感知。 相似文献
13.
超完备稀疏表示的图像超分辨率重构方法 总被引:2,自引:0,他引:2
为改善单帧退化图像的分辨率,提出一种基于超完备字典稀疏表示的图像超分辨率重构方法。该方法的核心是构建信号自适应的超完备字典对及计算图像关于对应字典的稀疏表示。为降低在训练过程中构建超完备字典对的复杂性,采用学习低分辨率字典而数值计算高分辨率字典的方法,待超分辨图像应用正则正交匹配追踪的稀疏表示算法求解关于字典的稀疏表示,并联合高分辨率字典实现超分辨率重构。实验表明,该方法与其他类似算法相比,字典训练和超分辨测试的速度都有显著提高,实验图像的峰值信噪比改善3.3 dB,框架相似性提高0.09。本方法可应用于单帧模糊图像的高倍率的超分辨率重构,有效地提高了图像的分辨率水平。 相似文献
14.
针对多数传统分类算法应用于高光谱分类都存在运算速度慢、精度比较低和难以收敛等问题,从稀疏表示基本理论出发建立了一个基于自适应稀疏表示的高光谱分类模型。利用训练样本构建字典,聚类每一步迭代所产生的余项,将聚类中心作为新的字典原子,然后将测试样本看成冗余字典中训练样本的线性组合,令字典能够更适应于样本的稀疏表示。利用华盛顿地区的HYDICE高光谱遥感数据进行试验,并且与主成分分析、线性鉴别分析、支持向量机、神经网络算法进行比较,结果表明,该算法的总体分类精度比其他算法提高了约12%,有效提高了高光谱影像的分类精度。 相似文献
15.
基于图像在过完备字典下的稀疏表示,建立了稀疏性正则化的多帧图像超分辨凸变分模型。模型中的正则项刻画了理想图像的稀疏性先验约束,保真项度量其在退化模型下与观测图像的一致性。基于线性化Bregman方法,将正则项替换为其Bregman距离,对保真项进行线性化,从而可将原问题解耦,进而提出求解该模型的两步迭代算法:第一步为仅对正则项的阈值收缩操作,第二步为仅对保真项的梯度下降操作。此方法大幅度降低了计算复杂性,并能够对噪声保持鲁棒。实验结果表明,只需较少次数的迭代就可获得很好的超分辨重建结果,验证了本文模型与算法的有效性。 相似文献
16.
差分合成孔径雷达(synthetic aperture radar, SAR)层析成像通过多航过数据重建观测目标的后向散射系数和视线方向形变速率。将全极化与差分SAR层析相结合,针对城市建筑成像高程向稀疏的特点以及全极化数据反演中,信号稀疏支撑集相同的特点,提出将稀疏约束与组稀疏约束相结合的求解模型,用基于层次稀疏的阈值迭代方法进行求解。通过仿真实验和基于BioSAR 2007实测数据的半仿真实验验证,实验表明全极化差分SAR层析成像方法,重构结果相较于单极化,提高了高程向和形变速率精度,且有更好的鲁棒性,在信噪比为10 dB时,相较于单极化差分SAR层析成像方法,能更好恢复高程向信息和形变速率。 相似文献
17.
针对高光谱图像分类时光谱信息和空间信息利用不充分、分类精度低的情况, 提出一种结合空间预处理的联合稀疏表示分类方法。一方面能够弥补联合稀疏表示固定窗口模式中空间信息利用不充分的问题, 另一方面也避免了像元多次参与联合稀疏模型的构建过程。考虑每个像元对联合稀疏模型的贡献不同, 通过赋予邻域像元相应权重以提高稀疏重构精度。最后, 充分利用训练样本的已知信息修正分类结果, 在Pavia University和AVIRIS Salinas两个数据集上进行实验验证。实验结果表明, 所提方法能够有效地提高高光谱图像分类精度。 相似文献
18.
基于属性稀疏特征差异度的动态抽象聚类方法 总被引:3,自引:0,他引:3
针对高属性维稀疏数据聚类问题,提出高属性维稀疏信息系统概念,给出一种新的基于稀疏特征差异度的动态抽象聚类方法。该方法的优势在于可伸缩性强,是一种面向属性稀疏特征,通过稀疏特征差异度可动态地、有效地实现对属性的归并,且具有一定容错性。该方法将在高属性维稀疏数据挖掘中起重要的作用。 相似文献
19.
为了充分利用高光谱图像邻域像元间的相似性与独特性这一特征信息,提出了一种基于核函数的联合稀疏表示分类方法(kernel joint sparse representation classification, K-JSRC)来提高高光谱图像的分类精度。该方法通过一种改进的核函数对每个待测中心像元的所有邻域像元自适应的予以不同权重来测量待测中心像元与邻域像元的相似度从而得到不规则的最优邻域窗口。在Indian Pines和University of Pavia两个高光谱数据集上的实验结果表明,提出的分类算法对高光谱图像进行了很好的分类并且其分类精度优于同类算法。 相似文献
20.
为了充分利用稀疏表示分类算法中重构残差包含的特征信息,将重构残差的波段信息反馈到测试样本中,自适应增强样本的稀疏特征提取。但反馈调整过程可能会出现特征过拟合的问题,为了进一步提高算法的稳定性和分类精度,提出了紧耦合像元生成算法(close coupled set of pixels, CCSP)来平滑特征分布以解决过拟合问题,并最终提出了基于紧耦合像元的自适应增强类内稀疏表示高光谱图像分类方法(close coupled set of pixels based adaptive boosting class wise sparse representation classifier, CCSP ABCWSRC)。在Indian Pines,University of Pavia,Salinas三个高光谱数据集上的实验结果表明,提出的算法对高光谱图像进行了稳定有效的分类并且其分类精度优于同类算法。 相似文献