首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
李孟春 《科学通报》2007,52(3):358-360
利用印刷电路板技术制作芯片模具, 以PDMS为材料制成微流控电泳芯片. 该芯片上集成有光纤, 靠光纤传输激发光, 使激发光斑的大小与微流控沟道的深度尺寸相接近, 提高了检测灵敏度, 省去了光学聚焦系统. 对集成光纤的微流控电泳芯片的加工工艺和封装方法进行了探讨. 用所制作的芯片对FITC(异硫氰酸荧光素)和以FITC标记的氨基酸进行了分离, 结果证明了该芯片的可行性.  相似文献   

2.
集成微流控芯片   总被引:2,自引:0,他引:2  
赵亮  申洁  周宏伟  黄岩谊 《科学通报》2011,56(23):1855-1870
作为一种能够在微米级尺度操纵液体的新兴技术, 微流控芯片已经受到科学家们的广泛关注. 高密度集成的微流控芯片装置可以实现高通量并行化的实验以及多种操作单元的功能一体化, 作为一种新的方法学平台, 已经越来越多地应用于化学和生命科学的研究中. 本文着重介绍了集成化微流控芯片装置的基本概念、构建方法、及其在细胞生物学、分子生物学以及化学合成应用研究中的最新进展, 尤其强调了集成微流控芯片系统在传统方法难以达成或实现的单细胞和高通量的研究中的优势, 展望了集成化微流控芯片在化学以及生命科学中的应用前景.  相似文献   

3.
郭佳慧  汪雨  许冬雨  赵远锦 《科学通报》2023,(13):1653-1665
柔性电子是一种新兴的电子技术.近年来,随着电子材料研究的深入,柔性电子已成功地与多个学科领域结合,成为跨学科研究的热门领域之一.与传统的刚性电子产品相比,柔性电子在轻便性、生物相容性、可穿戴性、机械稳定性和灵活性等方面展现出极大的优势.而纤维材料作为柔性电子系统的基础结构之一,其具有质量轻、机械柔韧性好、功能性多样的优点,在柔性电子膜、纺织品、可穿戴设备等多个行业中发挥着重要作用.在多种纤维制备方式中,微流控可以实现对微通道流体的精准操控,被证实可以实现多样化结构微纤维的制备.随着理论研究的深入和技术工艺的革新,微流控技术被认为是一种经济而有力的用于制造柔性导电微纤维的工具,并推动了其在柔性电子器件如传感器、储能器等方面的应用.因此,本文首先总结微流控纺丝技术在导电微纤维制备领域的研究进展,包括实心结构、核壳结构及多组分结构微纤维的制备;然后,重点介绍导电微纤维在传感、能量存储、组织工程等柔性电子领域的应用进展;最后,针对导电纤维用于柔性电子领域将面临的挑战和发展方向进行展望.  相似文献   

4.
基于惯性微流原理的微流控芯片用于血浆分离   总被引:3,自引:0,他引:3  
黄炜东  张何  徐涛  李卓荣  周雷激  杨梦甦 《科学通报》2011,56(21):1711-1719
血浆是临床生化检验中一类广泛使用的样品, 从全血中分离血浆是生命医学研究领域中一项非常重要的技术. 惯性微流(inertial microfluidics)原理的主要特点是无需施加任何外力如电磁力等, 仅依靠液体流动就可以在微通道内实现一定尺寸的微粒或细胞的聚焦流动. 本研究基于惯性微流原理, 设计并制备了具有不对称弯管结构通道的微流控芯片. 采用制备的荧光微球作为模型样品考察了装置的性能, 发现尺寸越大的微球保持惯性聚集流动的流速范围也越大. 在此基础上, 利用发展的芯片平台成功实现从稀释的血液样品中将血浆分离. 使用芯片对样品进行两次分离, 即二级分离后, 血液中血红细胞的分离效率超过90%. 该装置具有结构简单、体积小巧、操作方便等特点, 不仅可以快速分离血浆, 而且对血细胞基本无损, 易于作为功能模块与现有的一些芯片实验室(lab on a chip, LOC)系统集成结合.  相似文献   

5.
单分散性载药缓释微球作为新型药物释放系统已成为缓释药物制剂研究的热点问题之一,但传统制备方法获得的载药微球大多存在大小不均一、粒径分布宽、载药量低、缓释效果不明显等问题,极大地限制了其应用。微流控液滴技术因其操作简单,可以控制液滴形成的过程,成为近年发展起来的制备单分散性载药微球的新方法,在制备粒径均匀、具有特殊性能等载药微球方面有极大的优势。本文从传统载药微球的制备及存在问题入手,简述微流控技术的基本原理及液滴微流控制备载药微球的基本方法与类型,体现微流控技术相比传统制备技术的优势,即可以制备得到粒径均一、大小组分可控且呈单分散性的药物可控释放微球。  相似文献   

6.
林银银  巫金波 《自然杂志》2017,39(2):103-114
随着微流控技术的不断发展以及传统实验方法所暴露出的种种弊端,人们迫切希望微流控技术可以将传统实验室中的实验操作过程如样品预处理、混合、反应、萃取、分离、表征和检测等集中在一个芯片上,以微流控芯片代替传统实验室。这种高通量的实验方法将显著提高反应效率,增加产量,从而不但实现高通量材料的合成、表征与检测,也进一步促进了平台的集成化、微型化、自动化和便携化的发展。  相似文献   

7.
精细复合功能材料的研究及其展望中山大学物理系博士后周歧发中山大学物理系讲师张清琦中国科学院,西安交通大学教授,院士姚熹一、引青复合材料是一种多相材料,可以由有机分子、无机非金属和金属陶瓷等原料复合而成,复合材料的特点是它不仅能保持其原组分的部分特性,...  相似文献   

8.
在肿瘤及相伴血管生长过程中,微环境中的多种理化因素协同地发挥着重要的作用.传统体外实验多借助于Transwell等模型,在单一因素下考察细胞生物学效应,并不能反映在体的多因素微环境.基于微流控技术,本文构建了一种新的多细胞共培养模型,整合了多环境维度(二维/三维)、细胞与细胞及细胞与胞外基质相互作用、不同生化因子的浓度梯度、细胞区域性等多个重要因素,形成微环境,并能实时监测细胞的迁移和侵袭等响应.为评价该模型的可行性和功能上的独特优势,我们模拟了肿瘤细胞(HepG2,CAOV-3)和人脐静脉内皮细胞(HUVECs)共存的三维微环境,考察了它们共培养时相互诱导向三维基质材料中的迁移情况.结果表明,在三维共培养模型中细胞能够相互影响并出现明显形态差异;2种肿瘤细胞的诱导均使HUVECs迁移能力显著提高;同时2种不同肿瘤细胞出现了与其病理特质(HepG2低浸润,CAOV-3高浸润)相对应的迁移能力差异.以上结果表明,该模型可望为研究肿瘤微环境下的相关问题提供一个相对简便且更具整合价值的研究平台.  相似文献   

9.
肺癌是全球范围内发病率和死亡率均居首位的恶性肿瘤,具有显著的个体化特征和遗传异质性.无疑,以患者为中心的个性化药物筛选和新药研发对提高总体生存率至关重要.近年来,由于类器官模型具有培养周期短、操作便捷和拟合度高等优势,能够真实保留患者肿瘤的遗传信息,在模型构建和个性化药物筛选中扮演着越来越重要的角色.然而,传统类器官稳定性差、肿瘤微环境单一、通量低等固有缺陷限制了其进一步的临床转化与应用.基于微流控技术的类器官芯片是类器官在生物技术维度的延伸,可以实现对理化环境因素的精准控制、高度模拟肿瘤微环境、显著提高药物筛选通量,有效弥补了传统类器官培养技术的不足,开启了肿瘤个体化治疗新纪元.本文总结了微流控类器官芯片作为个性化药物筛选模型的优势特征,并结合在肺癌研究中的最新进展,探讨了类器官芯片在肺癌精准治疗中的转化价值和未来的发展方向.  相似文献   

10.
谢少荣  孙钰 《世界科学》2013,(11):50-52
细胞是生物体的基本功能单元,它通过内部化学、物理方式维持和感觉外部生理环境.独一无二的生物化学和生物物理特性使细胞能够实现特殊功能,并且适应外部环境.细胞的生理变化是伴随着自身一系列化学物理方面的改变和重组进行的.因此,病理细胞可以通过生物化学和生物物理方法得到识别——病理细胞的生物化学特性已经得到深入的研究,人们也已经研发出许多生物化学标记来从异源群体中识别出目标细胞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号