首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随着客户对服务水平要求的不断提高,带时间窗的车辆路径问题引起了越来越多的重视.以最小化总成本及最大化客户满意度为目标,建立了车辆路径问题的双目标整数规划模型.设计了混合蚁群算法求解该问题,设置精英蚂蚁策略分别探索两个目标函数,获得更好的非支配解.重新定义了自适应挥发因子平衡算法的局部和全局搜索能力,避免陷入早熟.以NS...  相似文献   

2.
基于混合蚁群算法的产品开发过程优化方法   总被引:2,自引:0,他引:2  
通过对迭代产品开发过程的分析,提出了将产品开发过程中设计活动被首次访问视为TSP问题中蚂蚁访问城市的思想,将Markov 过程建模方法与基本蚁群算法相结合,建立了混合蚁群算法对产品开发过程进行优化求解.示例表明该方法成功地将蚁群算法扩展到复杂产品开发过程优化问题,在考虑设计迭代以及设计活动完成时间服从任意分布的情况下,建立了产品开发过程优化模型,为该类问题的求解提供了一个新的思路和方法.  相似文献   

3.
求解有时间窗的车辆路径问题的混合蚁群算法   总被引:1,自引:2,他引:1  
针对目前蚁群算法在求解有时间窗的车辆路径问题上存在的缺陷,提出一种搜索效率较高的混合蚁群算法,阐述了混合蚁群算法的基本原理,给出了求解有时间窗的车辆路径问题的具体步骤.计算机实验结果表明,混合蚁群算法在求解有时间窗的车辆路径问题上是有效的.  相似文献   

4.
以生产车间设备布局优化的最小物流费用为目标,建立了车间设备布局优化问题的二次分配模型,并采用蚁群-遗传混合算法来对这一模型进行求解.该混合算法将蚁群算法和遗传算法的优点相融合,以蚁群系统的解作为遗传算法的初始种群,克服了蚁群算法的收敛速度慢,容易陷入局部最优以及遗传算法的容易早熟收敛等缺陷,来实现模型的全局最优.本文以某机械厂制造车间为例,运用MATLAB编程实现算法求解,结果显示:应用蚁群-遗传混合算法设计出来的设备布局新方案比原始方案总物流费用节约了10.6%,同时,混合算法在求解车间设备布局优化问题时比蚁群算法或者遗传算法速度更快,效果更好.  相似文献   

5.
针对工程设计中混合变量约束优化问题,提出一种基于模拟退火的粒子群算法。通过引入模拟退火算法,重新生成停止进化粒子的位置,增强了全局搜索能力。鉴于最优解位于可行域边界的特点,结合一种自适应保持群体中不可行解比例的策略,采用个体比较准则处理约束。同时结合混合变量优化问题的特点,通过转换函数,使算法真正在离散空间中进行搜索,保证了解的可行性。仿真结果表明:该算法能够快速准确地找到最优解,具有较好的稳定性。  相似文献   

6.
基于混合蚁群算法的无人机航路规划   总被引:2,自引:0,他引:2  
税薇  葛艳  韩玉  魏振钢  孟友新 《系统仿真学报》2011,23(3):574-576,597
无人机(UAV)航路规划的热点和难点在于如何满足安全性和实时性的同时,兼顾全局路径规划和局部路径重规划,以提高无人机的作战效率和生存概率。针对这一问题,在现有无人机航路规划研究基础之上,提出采用蚁群算法与人工势场法相结合的方法。蚁群算法用于全局航路规划,人工势场法用于局部路径重规划。仿真结果表明,两种算法结合所得优化航路较好反映了算法的有效性,可以为航路规划辅助决策研究提供借鉴和参考。  相似文献   

7.
现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。  相似文献   

8.
依据油品运输策略的不同,成品油二次配送可划分为两种模式:同一加油站的不同油品需求可拆分配送和不可拆分配送.在两种模式的基础上,根据带时间窗的成品油多舱配送基本模型,衍生出两类配送子模型;综合考虑蚁群算法较强的全局搜索能力和禁忌搜索算法的局部搜索能力,设计蚁群禁忌混合算法(ACO-TS),并提出相应策略用于两类子模型的求解.采用12组不同类型的算例进行数值实验,实验结果表明,混合算法能有效的求解两类配送子模型,并且针对第二类子模型设计的特有邻域能够加快算法求解速度;此外,两种配送模式中,同一加油站不同油品需求可拆分的模式在降低配送成本的同时,能够大幅提高车载率,减少车辆使用量。  相似文献   

9.
为解决紧急情况下的人车混合疏散问题, 以人车混合疏散的总时间最短、混合道路利用程度最高为目标,建立了一种人车混合疏散的多目标优化模型, 针对该模型设计了多目标蚁群优化算法及其改进算法,并应用于大型体育场及其周边路网集成环境中进行了仿真实验, 分析了不同人车混合比例下的疏散性能,结果表明:该模型及算法对人车混合交通流疏散问题具有良好的效果, 尤其是当行人所占比例为 50%-80% 时,人车混合疏散效果在两个目标上较优.该模型和算法有助于为大型公共场所人车混合安全疏散预案的制定提供决策支持.  相似文献   

10.
复杂产品是由多个子系统构成,并且是相互耦合而成的。为解决含有混合变量的复杂产品的协同优化建模问题,根据复杂产品的相互耦合特性,应用协同优化方法,在复杂产品的连续性模型的基础上加入变量分析,建立系统与各个子系统的目标函数与约束函数,得到含有混合变量的复杂产品的协同优化模型,包括了概念模型、总体优化模型、学科优化模型、学科分析模型、变量分析模型、系统集成模型。在文章最后,通过一个工程算例来验证模型的有效性。  相似文献   

11.
一种改进的粗粒度并行蚁群算法   总被引:1,自引:0,他引:1  
蚁群算法是一种模拟进化算法,具有很强的全局搜索能力。提出了一种基于粗粒度模型的并行蚁群算法,该算法采用了一个新的信息素更新策略———Ant-proportion,这种新的更新策略是综合考虑全局和局部信息,依据蚂蚁在搜索过程中所得到的路径的优劣程度和路径中各路段对其贡献的大小来分配信息素增量;另一方面,该算法采用的粗粒度模型充分利用了蚁群算法内在的并行性,使得算法具有更快的收敛速度和更好的优化质量。最后,选用了CHN144问题对该算法进行了检验,算法求得的最优路径优于已知的最优结果。  相似文献   

12.
一种随机蚁群算法求解连续空间优化问题   总被引:1,自引:0,他引:1  
通过将蚁群优化算法(ant colony optimization,ACO)与一种随机优化方法———Alopex算法相结合,提出一种随机蚁群混合算法(AACO)求解连续空间优化问题。该算法定义了蚁群在连续空间中的寻优方式以及新的信息素更新规则,并在局部搜索过程中嵌入改进的Alopex算法以提高搜索效率,有效地避免了优化算法陷入局部最优。基于多极值函数和非线性连续函数的仿真实验表明,该算法简单高效,具有良好的寻优性能。  相似文献   

13.
AN IMPROVED ANT COLONY ALGORITHM IN CONTINUOUS OPTIMIZATION   总被引:1,自引:0,他引:1  
A modified ant colony algorithm for solving optimization problem with continuous parameters ispresented. In the method, groups of candidate values of the components are constructed, and eachvalue in the group has its trail information. In each iteration of the ant colony algorithm, the methodfirst chooses initial values of the components using the trail information. Then GA operations ofcrossover and mutation can determine the values of the components in the solution. Our experimentalresults on the problem of nonlinear programming show that our method has a much higherconvergence speed and stability than those of simulated annealing(SA)and GA.  相似文献   

14.
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm.  相似文献   

15.
一种机器人路径规划的蚁群算法   总被引:2,自引:0,他引:2  
提出一种机器人路径规划的蚁群算法,该算法引入信息素限定和自适应信息素挥发系数的方法解决蚁群算法应用中的停滞现象和搜索能力的问题。算法仿真研究中发现了算法的收敛速度和环境地图建模的方式有密切关系,提出栅格地图模型的坐标变换法,提高了算法的运行效率。比较仿真实验结果证实了本算法的有效性和快速性。  相似文献   

16.
针对复杂生产过程中标准成本确定与产品质量和加工效率要求相脱离而导致标准成本控制能力弱的问题,研究基于时间与费用关系的标准成本确定优化方法.以产品标准成本最小及实际标准加工时间与理想标准加工时间之差最小为目标函数,产品质量控制要求为约束条件,建立标准成本制定数学模型.设计基于改进蚁群的模型求解算法,建立空间划分的蚁群搜索策略,克服算法早熟收敛.通过与变权重蚁群算法对比,表明改进蚁群算法的精度优于后者.最后以某企业的实际成本数据为例,将上述方法与企业目前采用的标准成本确定方法进行对比,验证该方法在降低标准成本、节约生产加工时间、控制产品质量等方面具有较好的效果,为面向生产作业的成本精益管控提供方法支持.  相似文献   

17.
基于蚁群优化的贝叶斯网络学习   总被引:2,自引:1,他引:2  
针对贝叶斯网络学习中的混合算法容易缩小搜索空间,同时易陷入局部最优等缺点,提出了基于蚁群优化的贝叶斯网络学习算法。首先应用最大最小父子节点集合算法(max min parents and children, MMPC)来构建无向网络的框架,然后利用蚁群优化算法进行评分〖CD*2〗搜索,通过平衡“开发”和“探索”力度来修补搜索空间并确定网络结构中边的方向。最后应用本算法学习逻辑报警还原机理网(a logical alarm reduction mechanism, ALARM),结果显示本算法减少了丢失边的数量,得到了更接近真实结构的贝叶斯网络。  相似文献   

18.
Ant colony optimization (ACO) is a new heuristic algorithm which has been proven a successful technique and applied to a number of combinatorial optimization problems.The traveling salesman problem (TSP) is among the most important combinatorial problems.An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature convergence problem of the basic ACO algorithm on TSP.The main idea is to partition artificial ants into two groups: scout ants and common ants.The common ants work according to the search manner of basic ant colony algorithm,but scout ants have some differences from common ants,they calculate each route's mutation probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability.Simulation on TSP shows that the improved algorithm has high efficiency and robustness.  相似文献   

19.
带时间窗车辆路径问题的量子蚁群算法   总被引:1,自引:1,他引:1  
带时间窗的车辆路径问题(VRPTW)是VRP的一种重要扩展类型, 是组合优化中的一个NP难题, 针对蚁群算法在求解VRPTW问题时易陷入局部最优和收敛速度慢的问题, 本文结合量子计算提出一种求解VRPTW的量子蚁群算法(QACA). 通过定义人工蚂蚁的转移概率, 增加量子比特启发式因子, 以及用量子旋转门实现信息素更新, 从而提高算法的全局搜索能力, 有效避免了算法陷入局部最优. 经一系列VRPTW的仿真实验表明, 量子蚁群算法较蚁群算法在求解VRPTW问题上具有更好的性能, 通过与其他算法的比较, 进一步说明量子蚁群算法是可行有效的.  相似文献   

20.
为制定网络化制造(networked manufacturing,NM)模式下供应链合作成员间的动态调度策略,构建了由制造商、协同设计商以及客户组成的三层动态调度模型;在生产能力约束、多目标优化约束等制约因素下,采用时间函数、成本函数和延期惩罚函数三个目标函数对调度问题进行描述;使用改进蚁群算法(improved ant colony optimization algorithm,IM-ACO),对调度路径可行解节点添加不同的信息素,并将信息素浓度约束在τminτmax之间,使得供应链客户个性化需求服务、运作时间、成本等综合收益达到最优. 实例仿真表明本文提出的动态调度优化算法求解具有较快的搜索速度、收敛性好,算法具有较好的稳定性;同时,也表明本文构建调度模型合理,可以为实际生产调度提供优化的策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号