首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
基于二维过渡金属硫化物(Transition Metal Dichalcogenides, TMDs)的二次谐波发射体得益于高的二阶非线性极化率和原子薄的厚度,成为集成非线性光子器件领域一种理想的候选材料.但是,二维TMDs材料的二次谐波转化效率受限于其弱的光与物质相互作用强度,阻碍了其在非线性光学器件上的应用.本综述聚焦于微纳结构调控二维TMDs材料二次谐波产生的物理机制和调控手段,首先简述二次谐波非线性光学的基础理论;然后讨论二维TMDs材料二次谐波的性质;之后回顾近年来微纳结构调控二维TMDs材料二次谐波产生的研究工作,如孔洞微腔、光子超表面、等离激元谐振器以及波导等;最后进行总结并对该领域未来的发展进行展望.了解二维TMDs材料的二次谐波的性质,理解微纳结构调控二次谐波的机理,对于二维TMDs材料在片上非线性光学器件的设计和研发具有重要的意义.  相似文献   

2.
二维材料(Two-Dimensional Materials)由于其低维尺度下的量子效应,表现出许多奇特的物理现象,引起了广大学者的研究兴趣.在非线性光学领域,二维材料展现出较高的二阶非线性极化率和高度可调的物理特性,使其成为非线性光电器件的潜在候选者之一.本文主要探讨了二维材料中二次谐波产生(Second Harmonic Generation, SHG)的调控与增强手段;简要介绍了二次谐波产生的基本光学原理,从二阶非线性系数和光与物质相互作用两个主要角度出发,分别回顾了对称性破缺和共振效应调控与增强二维材料二次谐波的不同方法,如层间堆叠、电场、应变和激子效应等;总结了二维材料二次谐波的调控方法,并对未来可能的研究方向和面临的挑战进行展望.了解二次谐波的产生机制以及调控和增强二次谐波各种策略方法,更有利于未来开发基于二次谐波的表征技术和探索基于二维材料的非线性光学器件.  相似文献   

3.
研究了双手性分子铁电液晶3M2CPOOB的非线性光学性质。实验发现这种材料具有很大的自发极化强度(〉10^-3C/m^2),较易获得相位区配及二次谐波的输出。测得二阶非线性光学系数、二次谐波强度与温度和液晶盒厚度的关系。在阶梯电场作用下,二次谐波强度动态响应为几百微秒到几百毫秒。  相似文献   

4.
二维材料由于其独特的结构与物理性质具有广阔的应用潜力,在光子学、光电子学、电子学等许多方面已经取得了很大的进展.最近,大数据、光网络、微型光开关等方面的应用需求直接或间接促进了二维材料非线性光学性质方面的研究工作.本文综述了二维材料(包括单层、少层和悬浮液等)的非线性光学性质研究进展:首先简单介绍了几种常见的二维材料(石墨烯、过渡金属硫族化合物、黑磷等)和非线性光学的基本理论,然后主要介绍了二维材料在不同非线性效应(参量过程包括二次谐波、三次谐波和四波混频等,非参量过程包括饱和吸收、双/多光子吸收和非线性折射等)中的发展现状,并在相应部分对这些微纳材料在非线性光学领域的应用前景和未来可能的研究方向进行了展望.  相似文献   

5.
各向异性二维材料由于其晶体结构的特殊性,在电学或者光学性质(如光致发光光谱、拉曼光谱、光吸收谱和电导率等)上表现出各向异性。这些性质引起了研究人员的广泛关注,特别是在光电探测方面的研究进展非常迅速,为其在光电器件的设计和开发中提供了巨大的应用潜力。文章从本征偏振探测和结构改进两方面综述了近几年来各向异性二维材料在偏振光电探测领域的发展和成果。首先阐述了各向异性二维材料的晶体结构特点和各向异性的来源,然后介绍了基于这类材料制备的多种偏振敏感光电探测器,接着提出了各向异性二维材料在光电探测应用上的重要性,最后基于现状提出了其所面临的挑战及机遇。  相似文献   

6.
在掺Fe浓度为0.025%,厚度为1.06mm的自散焦LiNbO3∶Fe晶体中发现了阵列光束与写入晶格相互作用,表现为双光束、3光束、4光束和6光束全部发生光斑分裂.通过对一维和二维光子晶体的二次谐波现象的理论计算,证明了空间二次谐波是产生光斑分裂的原因,并且发现满足相位匹配条件能够提高二次谐波的产生效率.  相似文献   

7.
原子级厚度的过渡金属硫化物二维材料具有独特的电子和光学性质,当将其构筑成原子层异质结时,由于层间耦合作用和界面电荷传递,导致产生新的光学性质,在光电器件方面具有重要的潜在应用.利用机械剥离法制备了WS_2/WSe_2异质结,通过变温拉曼光谱和变温光致发光光谱,研究了异质结中的层间相互作用和界面电荷传递.从拉曼光谱和光致发光光谱上观测到了层间声子和层间激子的存在,表明WS_2和WSe_2构成的异质结中存在明显的层间相互作用.由于WS_2和WSe_2形成Ⅱ型能带排列,电子从WSe_2向WS_2转移,显著影响带电激子和中性激子发光强度.  相似文献   

8.
运用密度泛函理论(DFT)量子化学方法,计算得到了二氢杨梅素及其21种硒化物的电子结构性质。结果表明,取代基团的引入使二氢杨梅素的键长发生明显改变,总能量发生降低,极性升高;与Se原子相连的C原子上负电荷增加;内部的电子越容易发生跃迁,从而反应的概率也就越大;通过红外光谱的分析,可以发现其特征峰特点较好地与官能团吻合起来。量子化学结果为硒化二氢杨梅素的实验研究提供了重要的理论信息。  相似文献   

9.
为研究不同层数MoS2的光学性质以及缺陷对单层MoS2光学性质的影响,利用基于密度泛函理论的第一性原理,计算1~3层MoS2的能带结构、拉曼光谱和光学性质以及具有空位缺陷的单层MoS2的拉曼光谱和光学性质.研究结果表明:单层MoS2为直接带隙半导体,而2~3层MoS2为间接带隙半导体.对于1~3层MoS2的拉曼光谱,随...  相似文献   

10.
拉曼光谱是表征石墨烯结构和性质的有效方法.高压环境会显著改变双层石墨烯的层间相互作用,进而改变其结构及物理性质.但是高压环境比较复杂,双层石墨烯的拉曼行为受传压介质、衬底、电子掺杂等多重因素的影响,这些因素对高压下双层石墨烯结构及拉曼光谱的影响机制与过程仍有待明确.为此研究了双层石墨烯在金刚石压砧中受到压力时,甲醇、甲醇/乙醇混合、氢气等传压介质对双层石墨烯拉曼光谱的影响,石墨烯悬空于金网衬底和生长于铜镍合金衬底上的不同,以及预先氟化对于拉曼光谱的影响.研究发现以悬空金网为衬底,在预先氟化条件下,氢气等单一传压介质做修饰时有助于双层石墨烯在高压下发生层间sp3杂化,有利于促进少层石墨烯到超薄金刚石薄膜的相变.此研究为高压下构建新型碳结构材料提供了更多有利的指引.  相似文献   

11.
本文对外加电场作用下GaAs/AlGaAs半抛物量子阱非线性光整流和二次谐波极化率进行了研究.首先,本文运用密度矩阵和迭代的方法获得外加电场作用半抛物量子阱系统光整流和二次谐波极化率的表达式.同时,采用有限差分法求得多外加电场作用下该系统的能级和波函数,避免了精确求解过程中的多重不恰当近似.结果表明:1)有限差分法计算结果相当精确;2)外加电场和受限势频率与系统能级、受限势形状、以及光整流和二次谐波极化率有着密切的关系,同时,可以通过外加电场和受限势频率实现对该系统光整流和二次谐波极化率的有效调控.将为基于子带跃迁的光电子器件的制备提供理论基础.  相似文献   

12.
Optical imaging is a promising method to identify and locate 2D materials efficiently and non-invasively. By putting a 2D material on a substrate, the nanolayer will add to an optical path and create a contrast to the case when the nanolayer is absent. This optical contrast imaging can be used to identify the 2D material and its number of layers. To make the optical imaging process in the laboratories an effective tool, Fresnel Law as a model was used to simulate the optical imaging results of 2D materials(graphene, Mo S2 and MoSe_2) on top of different thickness of SiO_2 and Si wafer in the present investigation. The results provide the details of the optimal conditions(optimal light wavelength and optimal SiO_2 thickness) to identify and locate single to few 2D nanolayers, which can be used directly in laboratories. The optical contrasts of 1–5 layers of molybdenum disulfide(MoS_2) and molybdenum diselenide(MoSe_2) were simulated. To the best of our knowledge, it is the first time that the optical contrast results of MoSe_2 have been reported. In particular, this work highlights the sensitivity of the model on the accuracy of the refractive indices used. It is demonstrated that through computational modeling that optical contrast can allow effective determination of number of layers in few layer 2D materials.  相似文献   

13.
利用紫外-可见吸收谱和旋转光学二次谐波产生方法研究了光学活性分子半花菁和光学非活性分子花生酸交替Y型多层LB膜中活性分子由于拉膜和“基板”增强的分子取向。我们首次发现并说明了由于平面内附加的极化导致二次谐波强度随LB层数大于平方增长关系。  相似文献   

14.
本文基于有机非线性光学材料的分子工程原理,就对硝基苯胺类衍生物进行了倍频性能的研究,合成了同一系列的十个化合物,并测定了它们的粉末SHG效应,发现其中三个化合物(MNA、MNMA和CNA)具有较大的倍频效率,颇有发展前途。  相似文献   

15.
研究Ga掺杂ZnO(GZO)和Cu薄膜形成的GZO/Cu/GZO多层薄膜体系,以期提高透明导电薄膜的综合性能。GZO/Cu/GZO多层薄膜由直流磁控溅射技术在室温下制备,研究Cu层厚度对多层薄膜结构、电学和光学性能的影响。结果表明GZO/Cu/GZO多层薄膜具有较好的结晶性能。随着Cu层厚度的增加,多层薄膜的可见光透射率有所降低,同时电学性能大幅度提升。在Cu层厚度为7.5 nm时,GZO/Cu/GZO多层薄膜获得最优的光电综合性能指标,且相对于单层GZO薄膜ΦTC因子从7.65×10-5Ω-1增加到1.48×10-3Ω-1。  相似文献   

16.
二氧化锡(SnO2)作为一种n型宽禁带半导体氧化物材料,广泛用于有机物催化、固态电子器件和锂离子电池电极材料领域。介孔SnO2具有较大的比表面积和纳米级有序孔道,与周围介质之间存在更强的相互作用力,可提高其在气敏传感器、催化反应中的应用效率。本文以SnCl4·5H2O为锡源,P123为模板剂,采用络合水热法合成了具有金红石结构的介孔二氧化锡,并考察了pH值、表面活性剂和添加剂等因素对介孔结构形成的影响;采用X射线衍射、透射电镜、荧光光谱等手段综合分析了产物的结构、形貌、成分及光学性质。结果表明所制备的介孔SnO2具有蠕虫状孔结构,表面积大,孔径集中分布在2~8 nm。合成的样品具有良好的光学性能,在光学材料领域具有应用前景。  相似文献   

17.
通过固相反应法,制备了不同粒径的ZnO纳米晶.采用透射电镜(TEM)、选区衍射(SAED)、X射线衍射(XRD)对制备的氧化锌纳米晶性质进行研究,通过室温和变温拉曼光谱,发现二级散射2TO模(983 cm-1)的相对强度随颗粒的减小而增大,这是由于小颗粒晶体的晶格平移对称性受到一定的破坏.随着温度的降低,ZnO的E2模...  相似文献   

18.
利用表面机械滚压处理(surface mechanical rolling treatment,SMRT)工艺在纯铜表面制备出梯度纳米结构层,获得了最表层为取向随机的纳米晶粒、亚表层的晶粒尺寸在厚度方向上呈梯度分布的结构层。采用光学显微镜、扫描电子显微镜、透射电子显微镜对微观组织进行表征,研究了晶界、位错、孪晶界等微观结构的演化。通过改变SMART工艺参数,在纯铜表面制备出不同厚度的梯度纳米结构层,对比分析了梯度纳米结构层厚度对纯铜力学性能的影响。结果表明:经SMRT后,试样距表面大约5 μm处的显微硬度高达1.56 GPa,其横截面的硬度随着距表面深度增加呈递减趋势;相比于粗晶铜,SMRT后纯铜的屈服强度提高了2倍多,而塑性损失很少,并且SMRT后纯铜的屈服强度随着梯度纳米结构层厚度的增加而提高。  相似文献   

19.
着重讨论该类晶体材料电子结构和分子结构的优化,发现由某些不同类型的配位键构成的八面体构型和四面体构型的配合物均有可能具有一定的倍频效应。  相似文献   

20.
采用固体粉末方法,测试了苯系偶氮、嘧啶、吡啶酮、四氢喹啉甲川型染料,以及中间体共62个有机分子的SHG效应,发现其中14个品种具有SHG活性。考察了影响SHG效应的有关因素,发现电子效应基本一致的硝基和氰基取代染料,呈现出完全不同的SHG性质。说明电子效应并不是影响有机分子SHG活性的唯一因素,PPP-MO理论计算结果也证实了这点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号