首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
提出一种求解约束优化问题的改进粒子群优化算法.该算法更多地考虑了当前全局最优粒子和个体最优粒子对粒子群搜索能力的影响,对速度更新公式做了改进;然后利用修正的可行基规则来更新个体极值和全局极值,从而引导不可行粒子尽可能到达可行的区域,以增加种群的多样性和提高全局搜索能力.数值实验表明,该算法是有效、稳定且计算精度高的全局...  相似文献   

2.
提出一种求解约束优化问题的修正选择粒子群优化算法(RSPSO).在这个算法中,利用动态多阶段罚函数方法处理约束,并加入一种违反约束的修正选择策略,采用线性递减违反约束容忍度来引导粒子,即利用修正的可行基规则来更新个体极值和全局极值,指引粒子迅速飞向可行域;考虑到粒子群中每个粒子周围的局部信息对它未来飞行的影响,改进了基本粒子群优化的速度方程.数值结果表明,所提出的算法求解约束最优化问题具有较高的计算精度、较好的稳定性和较强的全局寻优能力.  相似文献   

3.
采用粒子群算法处理约束优化问题时,由于约束条件使得解空间成为非凸集合,粒子容易陷入局部最优,因此在搜索过程的不同阶段,提出变步长因子的粒子群算法,实验证明改进的算法是可行的,且在精度与稳定性上明显优于采用罚函数的粒子群算法和遗传算法等其它一些算法.  相似文献   

4.
求解非线性约束优化问题改进的粒子群算法   总被引:1,自引:0,他引:1  
采用粒子群算法处理约束优化问题时,由于约束条件使得解空间成为非凸集合,粒子容易陷入局部最优,因此在搜索过程的不同阶段,提出变步长因子的粒子群算法,实验证明改进的算法在精度与稳定性上明显优于采用罚函数的粒子群算法和遗传算法等其他一些算法。  相似文献   

5.
微粒群算法(简称PSO算法)是一种新型的进化计算方法,已在许多领域得到了非常成功的应用。本文以约束优化问题为对象,首先介绍了采用罚函数法将约束优化问题化为无约束优化问题,和将约束优化问题转化为minmax问题,然后对无约束优化问题和minmax问题,采用PSO算法进行进化求解;在此基础上,以目标函数和约束满足分别为优化目标提出了一种双微粒群的PSO算法。仿真实验结果验证了方法的正确性与有效性。  相似文献   

6.
通过引入Hook-jeveese搜索法和可行基规则,提出一个求解约束优化问题的混合算法—Hook-jeveese搜索法和与可行基规则相结合改进的微粒群算法的混合算法.与惩罚函数法相比,可行基规则不需要额外的参数,且指引粒子迅速飞向可行域.并利用6个典型实例问题进行仿真计算比较,仿真结果表明了新算法是求解约束优化问题的一个高效的算法,而且获得了一些比以往文献更好的解.  相似文献   

7.
一种求解非线性约束优化问题的粒子群优化算法   总被引:1,自引:0,他引:1  
提出一种新的基于粒子群优化算法求解非线性约束优化问题的方法.通过引入自适应的退火罚因子和不可微精确罚函数来处理约束条件,可以使算法逐渐搜索到可行的极值点.数值实验证明了算法是有效的.  相似文献   

8.
求解约束优化问题的一种新的进化算法   总被引:17,自引:2,他引:17  
针对约束优化问题引入半可行域的概念, 提出竞争选择的新规则, 并改进了基于竞争选择和惩罚函数的进化算法的适应度函数; 结合粒子群优化(PSO)算法本身的特点, 设计了选择算子对半可行域进行操作, 从而得到一个利用PSO算法求解约束优化问题的新的进化算法. 实验证明了算法的有效性.  相似文献   

9.
针对粒子群算法易于坠入局部最优、早熟而造成求解成功率不高的问题引入回退算法的思想,提出一种用于求解工程约束的改进粒子群算法。对优化过程中不合约束的粒子不是简单抛弃,而使其回退到该粒子历史最优,进行下次搜索,这样求解过程中的粒子群搜索能力更强,以增强算法的成功率和运算速度、收敛性。通过对测试函数和工程实例进行仿真测试,并与标准粒子群算法对比,结果表明该算法是有效可行的。  相似文献   

10.
为有效求解带有约束条件的优化问题,提出一种动态多种群粒子群算法。采用动态多种群策略和广泛学习策略来提升种群的多样性, 并根据人类社会“人尽其才”的思想, 为每个子群指派成员, 以发挥每个粒子的最大效用。采用动态变异策略, 对全局最优粒子(Gbest)进行变异操作以提升算法跳出局部最优解的能力。在基准函数的测试结果中显示DMCPSO获得了较高的求解精度。  相似文献   

11.
微粒群算法在处理约束条件时最常采用的方法是约束保持法,但该方法易使粒子在搜索中停滞不前,为了改进传统约束保持法的缺点,将微粒群算法与信赖域算法相结合,从而保持了粒子的多样性并使最优解在可行域内。另外,采用与信赖域搜索技术相结合的随机惯性权重,改善了算法的全局寻优能力,提高了算法的收敛速度和计算精度。实验结果表明:与标准微粒群算法和一些其他优化算法相比,改进算法具有较强的寻优能力和寻优效率。  相似文献   

12.
粒子群算法在求解优化问题中的应用   总被引:15,自引:2,他引:15  
粒子群优化(PSO:Particle Swarm Optimization)算法是一种新兴的优化技术,其思想来源于人工生命和进化计算理论.PSO算法通过粒子追随自己找到的最好解和整个群体的最好解完成优化.为了避免PSO算法在求解最优化问题时陷入在局部最优及提高PSO算法的收敛速度,提出了对PSO算法增加更新概率.对无约束和有约束最优化问题分别设计了基于PSO算法的不同的求解方法和测试函数,并对PSO算法求解多目标优化问题进行了研究.仿真实验表明了改进的PSO算法求解最优化问题时的有效性.  相似文献   

13.
粒子群算法的改进及其在求解约束优化问题中的应用   总被引:9,自引:0,他引:9  
在用粒子群算法求解约束优化问题时, 处理好约束条件 是取得好的优化效果的关键. 通过对约束问题特征和粒子群算法结构的研究, 提出求解约束 优化问题一种改进的粒子群算法, 该算法让每个粒子都具有双适应值, 通过双适应值决定粒 子优劣, 并提出了自适应保留不可行粒子的策略. 实验证明, 改进的算法是可行的, 且在 精度与稳定性上明显优于采用罚函数的粒子群算法和遗传算法等算法.  相似文献   

14.
针对粒子群算法应用于复杂函数优化时可能出现过早收敛于局部最优解的情况,提出了一种改进的算法结构.通过构造单个粒子的多个进化方向和类似于蚂蚁群算法信息素表的选择机制,保留了粒子的多种可能进化方向,并对全局最优解进行变异.提高了粒子间的多样性差异,从而改善算法能力.改进后的粒子群算法的性能优于带线性递减权重的粒子群算法.  相似文献   

15.
将粒子群优化算法与一种自适应局部搜索算法相结合,提出了一种新的混合粒子群优化算法,使粒子群算法寻优过程中的全局搜索能力和局部搜索能力良好平衡;采用了典型函数和模糊神经网络优化问题对算法性能进行测试,并与其它方法进行比较.实验结果表明,这种混合粒子群优化算法能获得质量更好的解,具有较高的收敛性,特别是在高维复杂函数优化上具有很强的竞争力,其性能大大优于单一的优化方法.  相似文献   

16.
粒子群算法是一种新型的进化计算方法,已在许多领域得到了广泛的应用,但基本粒子群算法在计算过程中易出现过早收敛现象.为此提出了一种改进的粒子群算法,利用差异演化的思想,当陷入局部极小点时,通过一定的策略迫使粒子群摆脱局部极小点.对经典函数的测试计算,验证了方法的正确性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号