首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
恒壁温下梯形硅微通道热沉流动换热特性   总被引:3,自引:0,他引:3  
建立了恒壁温条件下微通道中层流流动换热的三维模型,对水力直径分别为108,160和200μm的梯形硅微通道内单相流动换热特性进行了数值模拟研究.研究结果表明:在恒壁温条件下,通道入口段Nu数最大,并沿流程逐渐减小,直至达到充分发展时,Nu数趋于定值;与大管道经典理论不同,充分发展段Nu数随Re数的增加而增加;通道尺度的减小能有效强化换热;恒壁温条件下的平均Nu数总是低于恒热流条件下平均Nu数.同时,对流动阻力损失的研究发现,Poiseuille数与经典值基本吻合.  相似文献   

2.
对非共沸混合工质R32/R134a在水平微翅管内的流动沸腾特性进行了实验研究,获得了微翅管的翅高和翅数对换热性能的影响,并综合比较了3根微翅管的换热性能。同时,将微翅管与光管性能进行了比较。结果表明,在相同工况下,翅高为0.2mm、翅数为60的换热性能最好;微翅管的换热性能明显优于光管。  相似文献   

3.
针对换流阀元件在工作时需要高效冷却的要求,采用全氟己烷类液体为工质的微通道相变冷却代替传统水冷系统,并对其在圆形、方形、三角形和梯形4种截面形状微通道内的流动沸腾特性进行了数值模拟,质量流量范围为0.000 1~0.002 kg/s,热流密度范围为50~500 kW/m~2。数值分析结果表明:通道内的锐角边会限制气泡的生长,加速气泡的融合、破碎;局部换热系数沿流动方向逐渐增大,相同当量直径下三角形通道局部换热系数最大,圆形次之,梯形最小;随着热流密度与质量流量增大,4种通道的平均换热系数均增大,当质量流量增大19倍时,换热系数增大0.11~0.32倍,压降增大5.62~8.98倍;当热流密度增大9倍时,换热系数增大0.16~0.20倍,压降增大1.08~1.53倍;三角形通道的性能因子最大,综合换热性能最佳。该研究可为换流阀微通道相变冷却系统的设计提供理论依据。  相似文献   

4.
研究表明微通道的截面形状、尺寸以及数量显著影响流体在通道中的传热性能。基于热阻网络模型和计算流体力学(CFD,computational fluid dynamics)模拟,对适用于流动沸腾散热的铜基微通道设计进行了热性能分析。根据实验和模拟计算结果,在确保微通道内热边界层发展区满足恒定壁温条件下,8个平行的尺寸为200μm高,800μm宽,10 mm长的铜基微通道阵列即可满足一般的流动沸腾应用所需要的对流散热量(如6 kW/m~2)。该微通道热沉设计可以在30 min内达到稳定,也可以在相对较短的时间内将目标系统维持在稳定的合理工作温度。此外,实验结果表明在微通道入口处的流体冲击流动可以提高微通道壁面与工作流体之间的对流换热系数,并且在很大程度上降低了壁温。  相似文献   

5.
热入口段对于微通道的换热有重要影响,而雷诺数Re对层流入口段的换热影响经常被忽略.据此,采用Fluent软件计算了恒壁温热边界条件下矩形微通道的换热性能,分析比较了不同Re数和不同宽高比对努谢尔数Nu的影响.结果表明:在入口区域,Re数对局部Nu数的影响不能忽略,当Re数小于125时,局部Nu数变化尤为明显;在充分发展后,Re数对Nu数的影响消失;矩形通道宽高比对局部Nu数的影响沿流动方向逐渐增大,在充分发展时达到最大值.此外计算了各工况下矩形通道的无量纲热入口段长度,发现在宽高比为3附近时,无量纲热入口段长度出现了最大值,该结果对微通道散热器优化设计具有一定的指导意义.  相似文献   

6.
微型通道冷凝器数值模拟与分析   总被引:1,自引:0,他引:1  
单相区选用合理的预测关联式,两相区采用均相模型,对微型通道形成的平行流式冷凝器进行了性能模拟,对制冷工质R134a进行设计工况下的稳态模拟,得出了微通道换热器的设计结果.分析了微通道换热特性与经典关联式模拟结果的差异,及迎面风速、外侧翅片布置、管道尺寸、外侧空气温度变化、冷凝器进口状态对换热器设计的影响;并比较了与常规尺度翅片管换热器的区别.可为设计及分析微型换热器的性能提供参考.  相似文献   

7.
波纹通道形状对流动与换热影响的数值研究   总被引:1,自引:0,他引:1  
应用数值方法,研究了流体在结构对称的正弦形、三角形、椭圆形、圆弧切线形及阶梯形通道内周期性充分发展的层流流动与换热特性,分析了恒壁温、常物性条件下通道表面形状,以及雷诺数RP对流动与换热性能的影响;并对不同通道的摩擦阻力系数f、表征换热特征的努谢尔特数Nu以及综合性能参数G分别进行了比较.结果表明:阶梯形通道内流体流动的f最大,正弦形通道的次之,椭圆形通道的f随Re的变化规律与其他通道的不尽相同;不同结构通道表面Nu的相对大小与Re的范围相关,Re>150后,阶梯形通道的换热能力最强,椭圆的最弱;三角形通道的综合性能最佳,椭圆形通道的最差,除阶梯形通道外,小Re时通道的综合性能优于大Re时的性能.本研究成果为换热器设计提供理论依据.  相似文献   

8.
以空气为介质,在雷诺数Re=50~1 100的范围内对非对称的三角形、正弦形和椭圆形波纹通道内稳态层流流动与换热进行数值模拟,分析了恒壁温条件下,Re、波纹板形状对流动与换热特性的影响,并拟合出了各通道内阻力系数f及表面换热特性数Nu随Re变化的关联式,同时对3种波纹通道的综合性能G进行了分析评价。结果表明,椭圆形通道的f最大;Re<500时三角形通道的f最小;在Re>300后椭圆形通道表面的Nu值最大;各通道的综合性能,以Re=900为界,在小Re时以正弦形通道性能最佳,椭圆通道的最差,大Re时椭圆通道的性能最佳。  相似文献   

9.
以甲醇为工质,在不同进口温度、质量流率、热流密度和倾角下,对低高宽比矩形微通道中流动沸腾压降特性进行了研究,并分别采用均相模型和分相模型对通道压降进行了计算。通过对比实验结果与计算结果发现,均相模型中两相平均粘度的计算应当采用Dukler公式,用其他计算式时误差较大;利用LockhartMartinelli关系式进行的分相模型计算发现,现有C值计算公式,如Chisholm,Lee and Lee,Mishima及Qu and Mudawar等,都不能用于预测该实验中低高宽比微通道的两相压降。实验发现当通  相似文献   

10.
水平新型微肋管内流动冷凝换热及流阻特性   总被引:1,自引:0,他引:1  
为研究微肋管结构尺寸及工况等对管内流动冷凝性能的影响,采用R22为工质对4种结构的微肋管和1根Ф9.52mm光管进行了实验.根据实验结果分析了质量流速、微肋结构尺寸和管径等对冷凝换热性能的影响.实验结果表明,两根Ф9.52mm微肋管的换热系数分别比光管提高了90%和120%,而其内表面积只比光管增加了40%和70%.  相似文献   

11.
对水平微圆管内非共沸混合工质R32/R134a的流动沸腾压降进行了试验,同时可视化观察了微圆管出口处的气泡行为.在此基础上分析了主要工况参数对微圆管内流动沸腾压降的影响,比较了微圆管、细圆管和常规管道内的两相流动压降特性.结果表明:微圆管内流动沸腾压降随质量干度和质量通量密度的增加而平稳增加.当热通量较低时,微圆管内压降增加幅度较小,但当热通量达到一定值时,微圆管内压降则以较大幅度升高.相同试验工况下微圆管内流动沸腾压降远大于常规管道.综合考虑流动压降和换热效果时,存在最佳通道结构使其换热经济性最好.  相似文献   

12.
针对微通道换热器强化沸腾换热,提出分段式梯形换热结构,该结构可实现气泡在表面张力驱动下间断性流向通道两侧,保持中间加热区为液体,实现气液分相流动,进而强化沸腾换热性能。采用无水乙醇为工质,实验研究直肋和梯形结构铜基表面在热流密度为160~320 kW/m2和工质流量为0.4~2.0 g/s时壁温、换热系数等参数变化规律。结果表明:在饱和沸腾区,梯形分相结构可有效实现气液分离,进而降低壁面温度,大幅提高换热系数;如在25 mm位置处,5段结构换热系数比平行结构换热系数提高了60.4%;在单相加热区,换热面积为主要影响因素,直肋结构换热系数略大,但换热系数比饱和沸腾时小一个数量级。平均换热系数分析得到5段结构微通道比平行结构微通道提高了53.8%,可见分段式结构可实现气液分相流动,有效提高沸腾换热的平均换热系数,增强整体换热能力。  相似文献   

13.
微细光滑管内可压缩流动换热特性的数值研究   总被引:1,自引:0,他引:1  
微细通道内的可压缩流动换热特性研究是一个新兴的研究领域.利用数值方法讨论了压力功和粘性耗散对微细光滑管内可压缩流动换热特性的影响,得出以下结论: 微细管内Ec沿管长是变化的,仅依据入口处的Ec对压力功及粘性耗散的作用进行取舍是不确切的;等热流及等壁温换热条件下的计算结果显示,在入口Ma及长径比较大时,考虑压力功及粘性耗散时得出的Nu要小于常规尺度管的理论值,在等壁温情况下,甚至出现了热流方向发生变化的情况.  相似文献   

14.
设计的微尺度流动与换热实验测试系统,主要研究水于小雷诺数下在微通道中受热单相流动的水力特性和传热特性。通过对相关的实验数据进行分析计算,表明水在微通道内流动时的压降值与阻力系数值均大于传统理论预测值,而传热特性的实验结果则与传统理论较为吻合。  相似文献   

15.
通过实验研究了质量流量在62.6~598.6kg/(m2·s)下不锈钢材质的平行微通道热沉内液氮流动沸腾的传热特性,并将实验所测得局部换热系数与经验关联式计算所得结果进行比较.结果表明:在核态沸腾阶段,随着干度增大,热沉的局部换热系数增加并逐渐达到一个峰值;当干度继续增大时换热系数逐渐减小;热沉的局部换热特性受其流型和低温流体工质特殊性的影响,在干度较低的条件下,其实验结果与模型预测结果的变化趋势一致,但预测值大于实验值.  相似文献   

16.
竖直矩形微槽道内的饱和沸腾换热研究   总被引:2,自引:0,他引:2  
对去离子水在三种不同结构尺寸的铝质矩形微槽道内的饱和沸腾换热特性进行了试验.结果表明,在试验条件下,其中去离子水的换热特性较常规尺度有所增强,且其强化换热性能随微槽尺寸的减小而增大.最后,由实验数据拟合出了热流密度与壁温过热度、热流密度与换热系数的关系式.  相似文献   

17.
微通道中临界热流密度的实验研究   总被引:5,自引:0,他引:5  
对当量直径0.5 mm,有效加热长度45.0 mm的微通道进行了临界热流密度的实验研究.表明临界热流密度随工质质量流速和进口过冷度的增加而增加.基于实验数据给出了临界热流密度与Weber数、进口过冷度的关联式.实验还发现微通道中的临界热流密度现象不同于常规通道.微通道中临界热流密度的产生是由于微通道的蒸汽阻塞.在达到临界热流密度之前,微通道的流动和传热主要是周期性的过冷流动沸腾,从微通道逸出的汽泡和进入微通道的液体反复交替冲刷微通道.一旦达到临界热流密度,微通道中的流动和传热主要是一个蒸汽周期性逸出的过程.一直持续到过热蒸汽的出现,直到最后整个微通道被过热蒸汽阻塞.  相似文献   

18.
在对三元非共沸混合制冷剂R417A在水平光滑管和两种不同几何参数的内螺纹管中流动沸腾换热实验研究的基础上,应用R417A在光滑管内的实验数据对流动沸腾换热中的对流蒸发部分进行重新拟合,并将这一拟合结果应用于Kattan模型与Thome、Wellsandt微肋模型之中,得到了非共沸混合制冷剂在水平光滑管与微肋管内流动沸腾换热新的计算方法.计算结果与实验结果的比较表明:新的计算方法使原模型偏高的预测结果降低了约30%~50%,与原模型相比,能较好的预测R417A在水平光滑管与不同微肋管内的流动沸腾换热系数.  相似文献   

19.
通过对国内外几位专家的研究成果以及作者的实验结果进行相互比较与分析,发现换热机理和蒸汽温度测点是影响热管换热公式归纳的主要因素,热虹吸管加热段的换热主要是自然对流,核态沸腾被深深地抑制了.基于该机理得出的经验关系式中,在以水为工质时,辛明道和马同泽的公式有很好的预测性;而以乙醇为工质时,Groβ的公式有很好的预测性,Imura的公式也有一定的参考价值;当工质未知时,建议采用Groβ的公式  相似文献   

20.
微通道内流的微尺度粒子图像测速技术实验研究   总被引:4,自引:0,他引:4  
采用微流动粒子图像测速技术Micro-PIV对0.4~0.8 mm的方形截面微通道流场进行了研究.实验选取3μm的荧光染色微球作为示踪粒子,使用532 nm激光、12位灰阶电荷耦合器件(CCD)相机及10倍显微物镜得到粒子图像.通过背景噪声处理技术提高了图像信噪比,并采用系综相关及回归算法得到了微通道截面的速度分布,测量的空间分辨率达到23.68μm×23.68μm×15.64μm.为了消除壁面随机粗糙分布的影响,采用沿流向进行空间平均方法得到了充分发展的方形截面微通道速度分布.将测量结果与方形截面理论幂函数速度廓线进行比较发现:微通道近壁区流场受到扰动的强弱和流道尺寸直接相关,除近壁区外的大部分区域速度分布与矩形截面流道理论速度分布符合良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号