共查询到17条相似文献,搜索用时 140 毫秒
1.
提出了一种电力系统短期负荷预测的算法,通过增加势态项及采用步长自适应等方法的对传统的BP算法进行了改进,实例计算表明该算法可行。 相似文献
2.
3.
分析了BP模型学习算法-累积误差逆传播算法在接近极小点时收敛速度变得异常缓慢的原因,并通过对连接权值的调整量引入权重系数,提出了一种改进的BP模型学习算法,大大加快了收敛速度,提出了收敛性。还利用的改进算法对某省中期负荷进行了预测,逄例结果表明了该算法的有效性。 相似文献
4.
电力系统短期负荷预测是电力系统运行管理和实时控制所必须的基本内容,预测结果的准确性对电力系统的安全、优质,经济运行具有重要意义.为提高电力系统短期负荷预测精度,采用三层BP型人工神经网络来建立短期负荷预测模型,将影响负荷的主要因素作为数据样本,进行网络的自我训练和学习,并且在训练和学习的过程中引入误差反方向传播算法(即BP算法)来修正神经网络的连接权重,从而达到对负荷预测模型的改良和完善,进一步贴近实际的负荷变化,其预测的精度也较高. 相似文献
5.
本文分析了电力系统负荷预测的重要性和与负荷预测相关的数据的特点,给出了基于BP算法的电力系统负荷预测系统的体系结构,重点研究了多层前馈神经网络构建、数据预处理及网络模型的学习。将BP算法应用于电力系统负荷预测,可有效地克服数据不完整性、含噪声等复杂因素对预测结果的影响,提高预测精度。 相似文献
6.
电力系统短期负荷预测是电力生产部门的重要工作之一,本文利用BP神经网络进行电力系统短期负荷预测时,根据影响因素确定了模型构成,并对输入变量选择进行了讨论,典型算例的计算表明该方法是有效的。 相似文献
7.
基于神经元网络的短期电力负荷预测 总被引:7,自引:0,他引:7
基于多层感知器可任意精度逼近线性或非线性函数的基本原理,提出一种考虑气候影响因素的多层前馈神经网络的短期负荷预测方法,并给出相应的反向传播算法(BP)的构造过程和训练方法,研究结果表明,基于神经元网络的短期电力负荷预测方法具有精度高的特点,负荷预测结果的相对误差小于3.67%。 相似文献
8.
基于BP算法的泥沙含量预测研究 总被引:1,自引:0,他引:1
长江口北槽是长江的主航道,泥沙的淤积对航运和河道治理有着极为重要的影响。根据ADCP资料,应用BP算法对长江口的泥沙含量进行了研究,建立了泥沙含量预测模型并根据实例资料进行了验证,实现了根据ADCP资料推求泥沙含量,其结果满足精度要求。 相似文献
9.
针对BP神经网络的固有缺陷,如训练速度慢,易收敛于局部极小点及全局搜索能力弱等,改进了传统BP算法,并采用遗传算法设计和优化神经网络结构参数,在此基础上建立了基于遗传算法的人工神经网络负荷预测模型,预测仿真结果表明,本文所提出的方法在预测精度和收敛速度方面均得到了改进。 相似文献
10.
根据电力负荷的主要影响因素,考虑时间和天气,建立了基于遗传算法和反向传播神经网络(BP)的短期负荷预测.从BP神经网络的理论入手,采用遗传算法优化BP神经网络的初始权值和隐层节点数,从而避免了神经网络结构确定和初始权值选择的盲目性,提高了神经网络用于电力系统短期负荷预测的效率和精度使得负荷预测在更加合理的网络结构上进行. 相似文献
11.
运用Matlab神经网络工具箱建立了一个RBF神经网络,依据某地实际的历史电力负荷数据和天气数据作为训练样本和测试样本,进行了考虑历史天气状况因素的电力系统短期负荷的预测和仿真,预测结果平均相对误差较小,满足精度要求,并将此RBF负荷预测模型与BP神经网络建立的短期电力负荷预测模型的预测结果进行了比较,显示了在相同预测条件下,RBF神经网络相比于BP神经网络在电力系统短期负荷预测方面的优越性. 相似文献
12.
基于BP神经网络的电力系统短期负荷预测 总被引:2,自引:0,他引:2
熊永胜 《成都大学学报(自然科学版)》2012,31(2):167-169
电力系统短期负荷预测的准确性对电力系统的实时运行调度至关重要.采用BP神经网络对电力系统负荷短期预测研究,根据影响电力系统的负荷因素如温度、天气等确定模型构成,同时利用遗传算法对BP神经网络进行优化.实例表明,利用遗传算法优化的BP神经网络在电力系统短期负荷预测中是有效的. 相似文献
13.
基于自组织特征映射神经网络的短期负荷预测 总被引:5,自引:0,他引:5
提出了一种基于自组织特征映射神经网络(Kohmonen网络)的短期负荷预测方法,根据Kohonen网络的聚类特性,样本在输入时就已分好类。输入既有与负荷曲线平滑性有关的数据又有反映负荷周期性变化的数据。在学习训练时,区别于普通的无监督竞争学习采用有监督竞争学习方式,缩短了学习时间,提高了学习精度。实例分析征明了该方法的有效性。 相似文献
14.
针对目前常用方法在解决负荷预测问题时,结果往往难以达到工程要求精度的现状,利用过程神经网络输入为时间函数以及预测精度高的特点,建立了基于过程神经网络的电力系统短期负荷预测模型;给出了模型的结构,基于函数正交基展开的离散数据拟合方法以及模型的学习算法.针对东北某地区电网的日负荷数据,进行了模型训练和负荷预测正确性的研究.结果表明,所建立的预测模型对负荷的预测准确率高,优于BP神经网络负荷预测模型的预测结果. 相似文献
15.
人工神经网络进行电力系统短期负荷预报的几个问题的探讨 总被引:1,自引:0,他引:1
研究了利用人工神经网络进行电力系统短期负荷预报中常会遇到的几个问题,提出了考虑年负荷增长率、极端气候、节假日问题及历史负荷资料少带来的预报误差的一些极为新颖的斛办法。实例证明,这些办法明显地改善了预报结果,使人工神经网络进行电力负荷短期预报的应用更适应于实际的要求。 相似文献
16.
自适应神经网络在短期负荷预测中的应用 总被引:2,自引:0,他引:2
采用基于混沌算法的自适应预测模型,应用于电力系统短期负荷预测.选取重构相空间中的饱和嵌入维数作为神经网络的输入节点数,适当选择非线性反馈项,能使网络的动力学在权空间具有混沌行为.通过进化算法建立一种自适应机制,使得网络能够根据学习和训练的结果优化非线性反馈项.算例表明,该算法具有很强的自适应能力和鲁棒性,精度高. 相似文献
17.
人工神经网络在电力系统短期负荷预测中的应用 总被引:4,自引:2,他引:4
根据电力系统短期负荷变化的特性,提出BP模型在实际负荷预测应用中的方法和步骤.对BP网络结构、样本空间、收敛性等作了有针对性的研究.结果表明:多层神经网络应用于电力系统短期负荷预测是可行和有效的.其预报结果比传统的负荷预测方法更准确、经济、效果更好. 相似文献