首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
第一类Cartan-egg域的凸性与Kobayashi度量   总被引:2,自引:0,他引:2  
苏简兵 《自然科学进展》2006,16(10):1224-1229
考察了Cartan-egg域CEI(k; N1, N2; m, n)的凸性, 得到此域为凸域的充分必要条件. Cartan-egg域既不是可递域也不是Reinhdart域, 利用Suzuki的方法计算出Cartan-egg域CEI(2; N1, N2; 2, n)和Cartan-Hartogs域YI(3; N; 2, n)上的Caratheodory度量和Kobayashi度量.  相似文献   

2.
研究了第三类华罗庚域的凸性,得到此域为凸域的充分必要条件,并将其推广到第三类广义华罗庚域上.作为应用,计算了第三类华罗庚域HEⅢ(N1,…,Nr,;7;4,…,4)上的Carathéodory度量和Kobayashi度量.  相似文献   

3.
凸性的度量     
本文从三个不同的侧面刻划凸函数的凸度,进一步讨论了测度等问题.  相似文献   

4.
进一步讨论了第一类超Cartan域上Khler-Einstein度量与Bergman度量的等价问题.运用Khler-Einstein度量与Bergman度量的显表达式以及连续函数的一些性质,得到了第一类超Cartan域上这两类度量等价的简单证明.  相似文献   

5.
本文证明了二连通域上双曲度量与Bergman度量的等价性。  相似文献   

6.
利用不变函数给出第一类超Cartan域的不变Kaehler度量及不变调和函数的显式表达式,其结果是第一类超Cartan域的最一般形式下的结果,从而推广了前人的结果。  相似文献   

7.
论文以显式给出了第二类华罗庚域的Bergman核函数。关键之处有两点:一是给出了该域的全纯自同构群,该群的任一元素能把该域的形为(W1,W2,Z0)的点映为(W1^*,W2^*,0);二是引进了semi-Reinhardt域的概念并求出了它的完备标准正交函数系。  相似文献   

8.
设T是矩形域T的一个子矩形域,证明了如果T“平行于”T,则T具有Bezier网的保凸性。即所有在T上凸的Bezier网在T上的限制也是凸的。  相似文献   

9.
利用群不变函数给出第一类超Cartan域的不变Khler度量及不变调和函数的显式表达式,其结果是第一类超Cartan域的最一般形式下的结果,从而推广了前人的结果  相似文献   

10.
显式获得了第二类华罗庚域的Bergman核函数.第二类华罗庚域是指由如下表达式所界定的域|w1|2p1+|w2|2p2+…+|wn|2pn<det(I-Z)这里,1/p1,1/p2,…,1/pn-1都是正整数,pn是任意正实数,RII(p)是第二类典型域,Z∈RII(p).关键之处有两点1)给出了将此域的任一内点(W,Z)映为(W*,0)的全纯自同构群;2)引进了semi-Reinhardt域并给出了它的完备规范正交函数系.  相似文献   

11.
Some extremal problems between the generalized Hua domain of the first type and the unit ball are studied. The extremal mapping and extremal value in explicit formulas are also obtained.  相似文献   

12.
In this paper, the holomorphic sectional curvature under invariant metric on a Cartan-Hartogs domain of the second type YII(N,p,K) is presented and an invariant K?]lher metric which is complete and not less than the Bergman metric is constructed, such that its holomorphic sectional curvature is bounded above by a negative constant. Hence a comparison theorem for the Bergman and Kobayashi metrics on YII(N,p,K) is obtained.  相似文献   

13.
The Einstein-Kahler metric for the Cartan-Hartogs domain of the second type is described. Firstly, the Monge-Ampère equation for the metric to an ordinary differential equation in the auxiliary function X=X(z,w) is reduced, by which an implicit function in X is obtained. Secondly, for some cases, the explicit forms of the complete Einstein-Kahler metrics on Cartan-Hartogs domains which are the non-homogeneous domains are obtained. Thirdly, the estimate of holomorphic sectional curvature under the Einstein-Kahler metric is given, and in some cases the comparison theorem for Kobayashi metric and Einstein-Kahler metric on Cartan-Hartogs domain of the second type is established.  相似文献   

14.
给出了第三类超Cartan域YⅢ(2,q;q^2-q+2/2(q-1))的完备的Einstein-Kaehler度量的显表达式.同时求出了在该度量下的全纯截曲率并得到其上、下界的估计.从而得到了它的Einstein-Kaehler度量和Kobayashi度量的比较定理.  相似文献   

15.
给出了第二类超Cartan域的完备Einstein-Kiihler度量的显表达式及其全纯截曲率的上下界的估计.  相似文献   

16.
给出了第三类超Cartan域 YⅢ2,q;(q2-q+2)/(2(q-1))的完备的Einstein-K(a)hler度量的显表达式.同时求出了在该度量下的全纯截曲率并得到其上、下界的估计.从而得到了它的Einstein-K(a)hler度量和Kobayashi度量的比较定理.  相似文献   

17.
研究了等差数列的凸性和对数凸性.进而利用受控理论证明了一些等差数列不等式.  相似文献   

18.
This paper introduces the Hua construction and presents the holomorphic automorphism group of the Hua construction of the fourth type. Utilizing the Bergman kernel function, under the condition of holomorphic automorphism and the standard complete orthonormal system of the semi-Reinhardt domain, the infinite series form of the Bergman kernel function is derived. By applying the properties of polynomial and Γ functions, various identification relations of the aforementioned form are developed and the explicit formula of the Bergman kernel function for the Hua construction of the fourth type is obtained, which suggest that many of the previously-reported results are only the special cases of our findings.  相似文献   

19.
This paper introduces the Hua construction and presents the holomorphic automorphism group of the Hua construction of the fourth type.Utilizing the Bergman kernel function,under the condition of holomorphie automorphism and the standard complete or- thonormal system of the semi-Reinhardt domain,the infinite series form of the Bergman kernel function is derived.By applying the prop- erties of polynomial andΓfunctions,various identification relations of the aforementioned form are developed and the explicit formula of the Bergman kernel function for the Hua construction of the fourth type is obtained,which suggest that many of the previously-reported results are only the special cases of our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号