首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
It has been acknowledged that wavelets can constitute a useful tool for forecasting in economics. Through a wavelet multi‐resolution analysis, a time series can be decomposed into different timescale components and a model can be fitted to each component to improve the forecast accuracy of the series as a whole. Up to now, the literature on forecasting with wavelets has mainly focused on univariate modelling. On the other hand, in a context of growing data availability, a line of research has emerged on forecasting with large datasets. In particular, the use of factor‐augmented models have become quite widespread in the literature and among practitioners. The aim of this paper is to bridge the two strands of the literature. A wavelet approach for factor‐augmented forecasting is proposed and put to test for forecasting GDP growth for the major euro area countries. The results show that the forecasting performance is enhanced when wavelets and factor‐augmented models are used together. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We studied the predictability of intraday stock market returns using both linear and nonlinear time series models. For the S&P 500 index we compared simple autoregressive and random walk linear models with a range of nonlinear models, including smooth transition, Markov switching, artificial neural network, nonparametric kernel regression and support vector machine models for horizons of 5, 10, 20, 30 and 60 minutes. The empirical results indicate that nonlinear models outperformed linear models on the basis of both statistical and economic criteria. Specifically, although return serial correlation receded by around 10 minutes, return predictability still persisted for up to 60 minutes according to nonlinear models, even though profitability decreases as time elapses. More flexible nonlinear models such as support vector machines and artificial neural network did not clearly outperform other nonlinear models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper evaluates the accuracy of 1‐month‐ahead systematic (beta) risk forecasts in three return measurement settings; monthly, daily and 30 minutes. It was found that the popular Fama–MacBeth beta from 5 years of monthly returns generates the most accurate beta forecast among estimators based on monthly returns. A realized beta estimator from daily returns over the prior year generates the most accurate beta forecast among estimators based on daily returns. A realized beta estimator from 30‐minute returns over the prior 2 months generates the most accurate beta forecast among estimators based on 30‐minute returns. In environments where low‐, medium‐ and high‐frequency returns are accurately available, beta forecasting with low‐frequency returns are the least accurate and beta forecasting with high‐frequency returns are the most accurate. The improvements in precision of the beta forecasts are demonstrated in portfolio optimization for a targeted beta exposure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This article proposes intraday high‐frequency risk (HFR) measures for market risk in the case of irregularly spaced high‐frequency data. In this context, we distinguish three concepts of value‐at‐risk (VaR): the total VaR, the marginal (or per‐time‐unit) VaR and the instantaneous VaR. Since the market risk is obviously related to the duration between two consecutive trades, these measures are completed with a duration risk measure, i.e. the time‐at‐risk (TaR). We propose a forecasting procedure for VaR and TaR for each trade or other market microstructure event. Subsequently, we perform a backtesting procedure specifically designed to assess the validity of the VaR and TaR forecasts on irregularly spaced data. The performance of the HFR measure is illustrated in an empirical application for two stocks (Bank of America and Microsoft) and an exchange‐traded fund based on Standard & Poor's 500 index. We show that the intraday HFR forecasts capture accurately the volatility and duration dynamics for these three assets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Poisson integer‐valued auto‐regressive process of order 1 (PINAR(1)) due to Al‐Osh and Alzaid (Journal of Time Series Analysis 1987; 8 (3): 261–275) and McKenzie (Advances in Applied Probability 1988; 20 (4): 822–835) has received a significant attention in modelling low‐count time series during the last two decades because of its simplicity. But in many practical scenarios, the process appears to be inadequate, especially when data are overdispersed in nature. This overdispersion occurs mainly for three reasons: presence of some extreme values, large number of zeros, and presence of both extreme values with a large number of zeros. In this article, we develop a zero‐inflated Poisson INAR(1) process as an alternative to the PINAR(1) process when the number of zeros in the data is larger than the expected number of zeros by the Poisson process. We investigate some important properties such as stationarity, ergodicity, autocorrelation structure, and conditional distribution, with a detailed study on h‐step‐ahead coherent forecasting. A comparative study among different methods of parameter estimation is carried out using some simulated data. One real dataset is analysed for practical illustration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper studies some forms of LASSO‐type penalties in time series to reduce the dimensionality of the parameter space as well as to improve out‐of‐sample forecasting performance. In particular, we propose a method that we call WLadaLASSO (weighted lag adaptive LASSO), which assigns not only different weights to each coefficient but also further penalizes coefficients of higher‐lagged covariates. In our Monte Carlo implementation, the WLadaLASSO is superior in terms of covariate selection, parameter estimation precision and forecasting, when compared to both LASSO and adaLASSO, especially for a higher number of candidate lags and a stronger linear dependence between predictors. Empirical studies illustrate our approach for US risk premium and US inflation forecasting with good results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
There is growing interest in exploring potential forecast gains from the nonlinear structure of multivariate threshold autoregressive (MTAR) models. A least squares‐based statistical test has been proposed in the literature. However, previous studies on univariate time series analysis show that classical nonlinearity tests are often not robust to additive outliers. The outlier problem is expected to pose similar difficulties for multivariate nonlinearity tests. In this paper, we propose a new and robust MTAR‐type nonlinearity test, and derive the asymptotic null distribution of the test statistic. A Monte Carlo experiment is carried out to compare the power of the proposed test with that of the least squares‐based test under the influence of additive time series outliers. The results indicate that the proposed method is preferable to the classical test when observations are contaminated by outliers. Finally, we provide illustrative examples by applying the statistical tests to two real datasets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The first purpose of this paper is to assess the short‐run forecasting capabilities of two competing financial duration models. The forecast performance of the Autoregressive Conditional Multinomial–Autoregressive Conditional Duration (ACM‐ACD) model is better than the Asymmetric Autoregressive Conditional Duration (AACD) model. However, the ACM‐ACD model is more complex in terms of the computational setting and is more sensitive to starting values. The second purpose is to examine the effects of market microstructure on the forecasting performance of the two models. The results indicate that the forecast performance of the models generally decreases as the liquidity of the stock increases, with the exception of the most liquid stocks. Furthermore, a simple filter of the raw data improves the performance of both models. Finally, the results suggest that both models capture the characteristics of the micro data very well with a minimum sample length of 20 days. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This paper analyzes the relative performance of multi‐step AR forecasting methods in the presence of breaks and data revisions. Our Monte Carlo simulations indicate that the type and timing of the break affect the relative accuracy of the methods. The iterated autoregressive method typically produces more accurate point and density forecasts than the alternative multi‐step AR methods in unstable environments, especially if the parameters are subject to small breaks. This result holds regardless of whether data revisions add news or reduce noise. Empirical analysis of real‐time US output and inflation series shows that the alternative multi‐step methods only episodically improve upon the iterated method.  相似文献   

10.
We introduce a long‐memory autoregressive conditional Poisson (LMACP) model to model highly persistent time series of counts. The model is applied to forecast quoted bid–ask spreads, a key parameter in stock trading operations. It is shown that the LMACP nicely captures salient features of bid–ask spreads like the strong autocorrelation and discreteness of observations. We discuss theoretical properties of LMACP models and evaluate rolling‐window forecasts of quoted bid–ask spreads for stocks traded at NYSE and NASDAQ. We show that Poisson time series models significantly outperform forecasts from AR, ARMA, ARFIMA, ACD and FIACD models. The economic significance of our results is supported by the evaluation of a trade schedule. Scheduling trades according to spread forecasts we realize cost savings of up to 14 % of spread transaction costs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
We propose an ensemble of long–short‐term memory (LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network inputs. The proposed ensemble operates in an online way, weighting the individual models proportionally to their recent performance, which allows us to deal with possible nonstationarities in an innovative way. The performance of the models is measured by area under the curve of the receiver operating characteristic. We evaluate the predictive power of our model on several US large‐cap stocks and benchmark it against lasso and ridge logistic classifiers. The proposed model is found to perform better than the benchmark models or equally weighted ensembles.  相似文献   

12.
This intention of this paper is to empirically forecast the daily betas of a few European banks by means of four generalized autoregressive conditional heteroscedasticity (GARCH) models and the Kalman filter method during the pre‐global financial crisis period and the crisis period. The four GARCH models employed are BEKK GARCH, DCC GARCH, DCC‐MIDAS GARCH and Gaussian‐copula GARCH. The data consist of daily stock prices from 2001 to 2013 from two large banks each from Austria, Belgium, Greece, Holland, Ireland, Italy, Portugal and Spain. We apply the rolling forecasting method and the model confidence sets (MCS) to compare the daily forecasting ability of the five models during one month of the pre‐crisis (January 2007) and the crisis (January 2013) periods. Based on the MCS results, the BEKK proves the best model in the January 2007 period, and the Kalman filter overly outperforms the other models during the January 2013 period. Results have implications regarding the choice of model during different periods by practitioners and academics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper combines and generalizes a number of recent time series models of daily exchange rate series by using a SETAR model which also allows the variance equation of a GARCH specification for the error terms to be drawn from more than one regime. An application of the model to the French Franc/Deutschmark exchange rate demonstrates that out‐of‐sample forecasts for the exchange rate volatility are also improved when the restriction that the data it is drawn from a single regime is removed. This result highlights the importance of considering both types of regime shift (i.e. thresholds in variance as well as in mean) when analysing financial time series. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
This paper applies the GARCH‐MIDAS (mixed data sampling) model to examine whether information contained in macroeconomic variables can help to predict short‐term and long‐term components of the return variance. A principal component analysis is used to incorporate the information contained in different variables. Our results show that including low‐frequency macroeconomic information in the GARCH‐MIDAS model improves the prediction ability of the model, particularly for the long‐term variance component. Moreover, the GARCH‐MIDAS model augmented with the first principal component outperforms all other specifications, indicating that the constructed principal component can be considered as a good proxy of the business cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The paper presents a comparative real‐time analysis of alternative indirect estimates relative to monthly euro area employment. In the experiment quarterly employment is temporally disaggregated using monthly unemployment as related series. The strategies under comparison make use of the contribution of sectoral data of the euro area and its six larger member states. The comparison is carried out among univariate temporal disaggregations of the Chow and Lin type and multivariate structural time series models of small and medium size. Specifications in logarithms are also systematically assessed. All multivariate set‐ups, up to 49 series modelled simultaneously, are estimated via the EM algorithm. Main conclusions are that mean revision errors of disaggregated estimates are overall small, a gain is obtained when the model strategy takes into account the information by both sector and member state and that larger multivariate set‐ups perform very well, with several advantages with respect to simpler models.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In their seminal book Time Series Analysis: Forecasting and Control, Box and Jenkins (1976) introduce the Airline model, which is still routinely used for the modelling of economic seasonal time series. The Airline model is for a differenced time series (in levels and seasons) and constitutes a linear moving average of lagged Gaussian disturbances which depends on two coefficients and a fixed variance. In this paper a novel approach to seasonal adjustment is developed that is based on the Airline model and that accounts for outliers and breaks in time series. For this purpose we consider the canonical representation of the Airline model. It takes the model as a sum of trend, seasonal and irregular (unobserved) components which are uniquely identified as a result of the canonical decomposition. The resulting unobserved components time series model is extended by components that allow for outliers and breaks. When all components depend on Gaussian disturbances, the model can be cast in state space form and the Kalman filter can compute the exact log‐likelihood function. Related filtering and smoothing algorithms can be used to compute minimum mean squared error estimates of the unobserved components. However, the outlier and break components typically rely on heavy‐tailed densities such as the t or the mixture of normals. For this class of non‐Gaussian models, Monte Carlo simulation techniques will be used for estimation, signal extraction and seasonal adjustment. This robust approach to seasonal adjustment allows outliers to be accounted for, while keeping the underlying structures that are currently used to aid reporting of economic time series data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号