共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper uses forecast combination methods to forecast output growth in a seven‐country quarterly economic data set covering 1959–1999, with up to 73 predictors per country. Although the forecasts based on individual predictors are unstable over time and across countries, and on average perform worse than an autoregressive benchmark, the combination forecasts often improve upon autoregressive forecasts. Despite the unstable performance of the constituent forecasts, the most successful combination forecasts, like the mean, are the least sensitive to the recent performance of the individual forecasts. While consistent with other evidence on the success of simple combination forecasts, this finding is difficult to explain using the theory of combination forecasting in a stationary environment. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
Micro‐founded dynamic stochastic general equilibrium (DSGE) models appear to be particularly suited to evaluating the consequences of alternative macroeconomic policies. Recently, increasing efforts have been undertaken by policymakers to use these models for forecasting, although this proved to be problematic due to estimation and identification issues. Hybrid DSGE models have become popular for dealing with some of the model misspecifications and the trade‐off between theoretical coherence and empirical fit, thus allowing them to compete in terms of predictability with VAR models. However, DSGE and VAR models are still linear and they do not consider time variation in parameters that could account for inherent nonlinearities and capture the adaptive underlying structure of the economy in a robust manner. This study conducts a comparative evaluation of the out‐of‐sample predictive performance of many different specifications of DSGE models and various classes of VAR models, using datasets for the real GDP, the harmonized CPI and the nominal short‐term interest rate series in the euro area. Simple and hybrid DSGE models were implemented, including DSGE‐VAR and factor‐augmented DGSE, and tested against standard, Bayesian and factor‐augmented VARs. Moreover, a new state‐space time‐varying VAR model is presented. The total period spanned from 1970:Q1 to 2010:Q4 with an out‐of‐sample testing period of 2006:Q1–2010:Q4, which covers the global financial crisis and the EU debt crisis. The results of this study can be useful in conducting monetary policy analysis and macro‐forecasting in the euro area. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
Massimiliano Marcellino 《Journal of forecasting》2008,27(4):305-340
Predicting the future evolution of GDP growth and inflation is a central concern in economics. Forecasts are typically produced either from economic theory‐based models or from simple linear time series models. While a time series model can provide a reasonable benchmark to evaluate the value added of economic theory relative to the pure explanatory power of the past behavior of the variable, recent developments in time series analysis suggest that more sophisticated time series models could provide more serious benchmarks for economic models. In this paper we evaluate whether these complicated time series models can outperform standard linear models for forecasting GDP growth and inflation. We consider a large variety of models and evaluation criteria, using a bootstrap algorithm to evaluate the statistical significance of our results. Our main conclusion is that in general linear time series models can hardly be beaten if they are carefully specified. However, we also identify some important cases where the adoption of a more complicated benchmark can alter the conclusions of economic analyses about the driving forces of GDP growth and inflation. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
Value‐at‐risk (VaR) is a standard measure of market risk in financial markets. This paper proposes a novel, adaptive and efficient method to forecast both volatility and VaR. Extending existing exponential smoothing as well as GARCH formulations, the method is motivated from an asymmetric Laplace distribution, where skewness and heavy tails in return distributions, and their potentially time‐varying nature, are taken into account. The proposed volatility equation also involves novel time‐varying dynamics. Back‐testing results illustrate that the proposed method offers a viable, and more accurate, though conservative, improvement in forecasting VaR compared to a range of popular alternatives. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
5.
Hierarchical time series arise in various fields such as manufacturing and services when the products or services can be hierarchically structured. “Top-down” and “bottom-up” forecasting approaches are often used for forecasting such hierarchical time series. In this paper, we develop a new hybrid approach (HA) with step-size aggregation for hierarchical time series forecasting. The new approach is a weighted average of the two classical approaches with the weights being optimally chosen for all the series at each level of the hierarchy to minimize the variance of the forecast errors. The independent selection of weights for all the series at each level of the hierarchy makes the HA inconsistent while aggregating suitably across the hierarchy. To address this issue, we introduce a step-size aggregate factor that represents the relationship between forecasts of the two consecutive levels of the hierarchy. The key advantage of the proposed HA is that it captures the structure of the hierarchy inherently due to the combination of the hierarchical approaches instead of independent forecasts of all the series at each level of the hierarchy. We demonstrate the performance of the new approach by applying it to the monthly data of ‘Industrial’ category of M3-Competition as well as on Pakistan energy consumption data. 相似文献
6.
The hedging of weather risks has become extremely relevant in recent years, promoting the diffusion of weather‐derivative contracts. The pricing of such contracts requires the development of appropriate models for the prediction of the underlying weather variables. Within this framework, a commonly used specification is the ARFIMA‐GARCH. We provide a generalization of such a model, introducing time‐varying memory coefficients. Our model satisfies the empirical evidence of the changing memory level observed in average temperature series, and provides useful improvements in the forecasting, simulation, and pricing issues related to weather derivatives. We present an application related to the forecast and simulation of a temperature index density, which is then used for the pricing of weather options. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
7.
The track record of a 20‐year history of density forecasts of state tax revenue in Iowa is studied, and potential improvements sought through a search for better‐performing ‘priors’ similar to that conducted three decades ago for point forecasts by Doan, Litterman and Sims (Econometric Reviews, 1984). Comparisons of the point and density forecasts produced under the flat prior are made to those produced by the traditional (mixed estimation) ‘Bayesian VAR’ methods of Doan, Litterman and Sims, as well as to fully Bayesian ‘Minnesota Prior’ forecasts. The actual record and, to a somewhat lesser extent, the record of the alternative procedures studied in pseudo‐real‐time forecasting experiments, share a characteristic: subsequently realized revenues are in the lower tails of the predicted distributions ‘too often’. An alternative empirically based prior is found by working directly on the probability distribution for the vector autoregression parameters—the goal being to discover a better‐performing entropically tilted prior that minimizes out‐of‐sample mean squared error subject to a Kullback–Leibler divergence constraint that the new prior not differ ‘too much’ from the original. We also study the closely related topic of robust prediction appropriate for situations of ambiguity. Robust ‘priors’ are competitive in out‐of‐sample forecasting; despite the freedom afforded the entropically tilted prior, it does not perform better than the simple alternatives. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
This intention of this paper is to empirically forecast the daily betas of a few European banks by means of four generalized autoregressive conditional heteroscedasticity (GARCH) models and the Kalman filter method during the pre‐global financial crisis period and the crisis period. The four GARCH models employed are BEKK GARCH, DCC GARCH, DCC‐MIDAS GARCH and Gaussian‐copula GARCH. The data consist of daily stock prices from 2001 to 2013 from two large banks each from Austria, Belgium, Greece, Holland, Ireland, Italy, Portugal and Spain. We apply the rolling forecasting method and the model confidence sets (MCS) to compare the daily forecasting ability of the five models during one month of the pre‐crisis (January 2007) and the crisis (January 2013) periods. Based on the MCS results, the BEKK proves the best model in the January 2007 period, and the Kalman filter overly outperforms the other models during the January 2013 period. Results have implications regarding the choice of model during different periods by practitioners and academics. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
In this paper we develop a latent structure extension of a commonly used structural time series model and use the model as a basis for forecasting. Each unobserved regime has its own unique slope and variances to describe the process generating the data, and at any given time period the model predicts a priori which regime best characterizes the data. This is accomplished by using a multinomial logit model in which the primary explanatory variable is a measure of how consistent each regime has been with recent observations. The model is especially well suited to forecasting series which are subject to frequent and/or major shocks. An application to nominal interest rates shows that the behaviour of the three‐month US Treasury bill rate is adequately explained by three regimes. The forecasting accuracy is superior to that produced by a traditional single‐regime model and a standard ARIMA model with a conditionally heteroscedastic error. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
10.
We propose a simple and flexible framework for forecasting the joint density of asset returns. The multinormal distribution is augmented with a polynomial in (time‐varying) non‐central co‐moments of assets. We estimate the coefficients of the polynomial via the method of moments for a carefully selected set of co‐moments. In an extensive empirical study, we compare the proposed model with a range of other models widely used in the literature. Employing a recently proposed as well as standard techniques to evaluate multivariate forecasts, we conclude that the augmented joint density provides highly accurate forecasts of the ‘negative tail’ of the joint distribution. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
In this paper, we introduce the functional coefficient to heterogeneous autoregressive realized volatility (HAR‐RV) models to make the parameters change over time. A nonparametric statistic is developed to perform a specification test. The simulation results show that our test displays reliable size and good power. Using the proposed test, we find a significant time variation property of coefficients to the HAR‐RV models. Time‐varying parameter (TVP) models can significantly outperform their constant‐coefficient counterparts for longer forecasting horizons. The predictive ability of TVP models can be improved by accounting for VIX information. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
We study the performance of recently developed linear regression models for interval data when it comes to forecasting the uncertainty surrounding future stock returns. These interval data models use easy‐to‐compute daily return intervals during the modeling, estimation and forecasting stage. They have to stand up to comparable point‐data models of the well‐known capital asset pricing model type—which employ single daily returns based on successive closing prices and might allow for GARCH effects—in a comprehensive out‐of‐sample forecasting competition. The latter comprises roughly 1000 daily observations on all 30 stocks that constitute the DAX, Germany's main stock index, for a period covering both the calm market phase before and the more turbulent times during the recent financial crisis. The interval data models clearly outperform simple random walk benchmarks as well as the point‐data competitors in the great majority of cases. This result does not only hold when one‐day‐ahead forecasts of the conditional variance are considered, but is even more evident when the focus is on forecasting the width or the exact location of the next day's return interval. Regression models based on interval arithmetic thus prove to be a promising alternative to established point‐data volatility forecasting tools. Copyright ©2015 John Wiley & Sons, Ltd. 相似文献
13.
Time series of categorical data is not a widely studied research topic. Particularly, there is no available work on the Bayesian analysis of categorical time series processes. With the objective of filling that gap, in the present paper we consider the problem of Bayesian analysis including Bayesian forecasting for time series of categorical data, which is modelled by Pegram's mixing operator, applicable for both ordinal and nominal data structures. In particular, we consider Pegram's operator‐based autoregressive process for the analysis. Real datasets on infant sleep status are analysed for illustrations. We also illustrate that the Bayesian forecasting is more accurate than the corresponding frequentist's approach when we intend to forecast a large time gap ahead. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
Hidden Markov models are often used to model daily returns and to infer the hidden state of financial markets. Previous studies have found that the estimated models change over time, but the implications of the time‐varying behavior have not been thoroughly examined. This paper presents an adaptive estimation approach that allows for the parameters of the estimated models to be time varying. It is shown that a two‐state Gaussian hidden Markov model with time‐varying parameters is able to reproduce the long memory of squared daily returns that was previously believed to be the most difficult fact to reproduce with a hidden Markov model. Capturing the time‐varying behavior of the parameters also leads to improved one‐step density forecasts. Finally, it is shown that the forecasting performance of the estimated models can be further improved using local smoothing to forecast the parameter variations. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
Redouane Benabdallah Benarmas;Kadda Beghdad Bey; 《Journal of forecasting》2024,43(5):1294-1307
Traffic forecasting is a crucial task of an Intelligent Transportation System (ITS), which remains very challenging as it is affected by the complexity and depth of the road network. Although the decision-makers focus on the accuracy of the top-level roads, the forecasts on the lower levels also improve the overall performance of ITS. In such a situation, a hierarchical forecasting strategy is more appropriate as well as a more accurate prediction methods to reach an efficient forecast. In this paper, we present a deep learning (DL) approach for hierarchical forecasting of traffic flow by exploring the hierarchical structure of the road network. The proposed approach is considered an improved variation on the top-down strategy for the reconciliation process. We propose a model based on two deep neural network components to generate a coherent forecast for the total number of road segments. We use N-BEATS, a pure deep learning forecasting method, at the highest levels for traffic time series, then disaggregate these downwards to get coherent forecasts for each series of the hierarchy using a combination of CNN and LSTM. Experiments were carried out using Beijing road traffic dataset to demonstrate the effectiveness of the approach. 相似文献
16.
Bo Zhang 《Journal of forecasting》2019,38(3):175-191
We use real‐time macroeconomic variables and combination forecasts with both time‐varying weights and equal weights to forecast inflation in the USA. The combination forecasts compare three sets of commonly used time‐varying coefficient autoregressive models: Gaussian distributed errors, errors with stochastic volatility, and errors with moving average stochastic volatility. Both point forecasts and density forecasts suggest that models combined by equal weights do not produce worse forecasts than those with time‐varying weights. We also find that variable selection, the allowance of time‐varying lag length choice, and the stochastic volatility specification significantly improve forecast performance over standard benchmarks. Finally, when compared with the Survey of Professional Forecasters, the results of the best combination model are found to be highly competitive during the 2007/08 financial crisis. 相似文献
17.
Value‐at‐risk (VaR) forecasting generally relies on a parametric density function of portfolio returns that ignores higher moments or assumes them constant. In this paper, we propose a simple approach to forecasting of a portfolio VaR. We employ the Gram‐Charlier expansion (GCE) augmenting the standard normal distribution with the first four moments, which are allowed to vary over time. In an extensive empirical study, we compare the GCE approach to other models of VaR forecasting and conclude that it provides accurate and robust estimates of the realized VaR. In spite of its simplicity, on our dataset GCE outperforms other estimates that are generated by both constant and time‐varying higher‐moments models. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
In this paper we propose Granger (non‐)causality tests based on a VAR model allowing for time‐varying coefficients. The functional form of the time‐varying coefficients is a logistic smooth transition autoregressive (LSTAR) model using time as the transition variable. The model allows for testing Granger non‐causality when the VAR is subject to a smooth break in the coefficients of the Granger causal variables. The proposed test then is applied to the money–output relationship using quarterly US data for the period 1952:2–2002:4. We find that causality from money to output becomes stronger after 1978:4 and the model is shown to have a good out‐of‐sample forecasting performance for output relative to a linear VAR model. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
19.
G. L. Riddington 《Journal of forecasting》1999,18(3):205-214
Demand for skiing expanded rapidly in the 1980s, fell quite dramatically at the start of the 1990s as the economy declined but has not subsequently recovered. Two possible explanations are explored. The first is based on perceiving skiing as a new product to most consumers, which reached maximum growth in 1989. Current levels now largely represent ‘repeat buyers’. The alternative approach sees the growth as the result of economic factors, particularly credit conditions. The importance of these factors was not, however, constant, and grew with the changes in the financial system. Thus the recovery had a muted effect. These two approaches are modelled, estimated and the results compared by both residual and ex post forecasting analysis. The paper concludes that the varying coefficient econometric model probably produces the most reliable forecasts. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
20.
Jari Hännikäinen 《Journal of forecasting》2018,37(1):102-118
This paper analyzes the relative performance of multi‐step AR forecasting methods in the presence of breaks and data revisions. Our Monte Carlo simulations indicate that the type and timing of the break affect the relative accuracy of the methods. The iterated autoregressive method typically produces more accurate point and density forecasts than the alternative multi‐step AR methods in unstable environments, especially if the parameters are subject to small breaks. This result holds regardless of whether data revisions add news or reduce noise. Empirical analysis of real‐time US output and inflation series shows that the alternative multi‐step methods only episodically improve upon the iterated method. 相似文献